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Abstract Background: Sepsis a complex clinical syndrome represents life-threatening organ dysfunction instigated by an
infection’s dysregulated host response. Early detection and accurate prognostication of sepsis are crucial; they pave the way for
timely intervention, ultimately enhancing patient outcomes. The rise in interest towards Artificial Intelligence (AI) applications
within laboratory technologies is directly related to its potential for improving early detection and prognosis forecasting in
sepsis cases; this interest comes as AI continues its advancement. Methods: We conducted a systematic review of studies
utilizing AI algorithms in laboratory settings for early sepsis detection and prognostication: our methods entailed searching
relevant databases for research published until October 2023. Our inclusion criteria spanned original articles; these applied
machine learning (ML) and deep learning (DL) techniques to laboratory data with the aim being sepsis prediction. We assessed
the quality of the studies, extracted and synthesized data on AI model performance metrics - including: area under receiver
operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results: The review encompassed eight studies
meeting the inclusion criteria; AI models showcased exceptional predictive capabilities evidenced by a range of AUROC
values from 0.799 to 0.9213, signifying noticeably acceptable performance. However, there was wide variation in sensitivity
and specificity among these analyses; an indicator of heterogeneity in model performance. Superior prognostic accuracy and
potential for real-time monitoring of patients’ early sepsis signs emerged in several models; notably, within the first 12 hours of
patient admission their highest predictive period. The models frequently outperformed traditional scoring systems. Conclusion:
Laboratory technology’s AI applications significantly promise sepsis’ early detection and prognostication. Reviewed studies
suggest AI models may surpass traditional methods, offering potential integration into clinical workflows for rapid sepsis
identification aid. Nevertheless, we also acknowledged both the variability in model performance and necessity of additional
validation across diverse clinical settings. Future research: it must concentrate on two key aspects–the refinement of AI
algorithms to enhance sensitivity and precision; furthermore, it should delve into evaluating the clinical impact of tools for
sepsis prediction that are assisted by AI.

Key Words Artificial Intelligence, Sepsis, Early Detection, Prognostication, Laboratory Technologies, Machine Learning,
Deep Learning

1. Introduction

A dysregulated host response to infection causes sepsis, a
life-threatening organ dysfunction that presents as global
healthcare challenge with high morbidity and mortality rates.
Detecting sepsis early, accurately predicting its outcomes
are critical for improving patient results; however, these
tasks persist in complexity filled with clinical uncertainty

[1]. The promise of a significant revolution in current sepsis
management landscape emerges from integrating artificial
intelligence (AI) into laboratory technologies [2].

AI processes vast datasets with unparalleled speed and
precision, harnessing this capability offers a groundbreaking
edge in early sepsis identification [3]. More specifically, ma-
chine learning algorithms-a subset of AI-analyzes intricate

45

http://creativecommons.org/licenses/by/4.0


Bakouri et al.: Artificial Intelligence in Laboratory Technologies for Early Detection and Prognostication of Sepsis: A Systematic Review

Abbreviation Full form
AI Artificial Intelligence
AUROC Area Under the Receiver Operating Characteristic
CNN Convolutional Neural Network
DOR Diagnostic Odds Ratio
ICU Intensive Care Unit
LASSO Least Absolute Shrinkage and Selection Operator
LSTM Long Short-Term Memory
ML Machine Learning
MLD Machine Learning Derived
NPV Negative Predictive Value
PBIs Presumed Bacterial Infections
PPV Positive Predictive Value
SOFA Sequential Organ Failure Assessment
TSS Traumatic Sepsis Score
XGBoost Extreme Gradient Boosting

Table 1: Abbreviations used in the review

laboratory results; it identifies patterns that may not be imme-
diately evident to human clinicians. Consequently, potential
sepsis cases receive swift flags compared to conventional
methods. Markedly increasing the risk of mortality is every
hour’s delay in treating sepsis; hence this swift identification
becomes crucial [4].

AI applications in laboratory medicine, moreover, extend
beyond mere detection: they provide prognostic insights;
these can direct clinical decision-making [5]. By employing
predictive analytics- a tool of AI- we stratify patients based
on risk and forecast their trajectories; this enables us to tailor
treatment strategies for each individual–potentially enhanc-
ing patient outcomes while optimizing resource utilization
[6].

AI holds the potential to revolutionize laboratory technolo-
gies in sepsis through its remarkable computational capabil-
ity and perpetual learning aptitude. Over time, we can train
AI systems on new data which enhances their diagnostic
and prognostic capabilities [7]. Coupled with advancements
in laboratory techniques like genomics and proteomics, this
dynamic nature of AI could drive earlier interventions with
greater precision; potentially transforming patient care path-
ways as well as outcomes [8].

The contemporary medical lexicon characterizes sepsis as
a critical condition: it originates from an infection-induced
maladaptive response of the host, and this can lead to life-
threatening organ dysfunction; furthermore, its definition es-
tablished in 2016 supersedes the earlier one–predominantly
based on systemic inflammation markers delineated in 1992.
This redefined perspective not only refines our understanding
of sepsis’ underlying pathophysiological mechanisms but
also boosts precision regarding diagnostic benchmarks. In
favor of a more nuanced recognition of sepsis-related or-
gan dysfunction, we have rendered the term ’severe sepsis’
obsolete. We designate sepsis that progresses to encompass
circulatory collapse as septic shock; this represents the most
critical manifestation of the syndrome.

The evolution of the sepsis definition has concomitantly
prompted updates in diagnosis protocols, which under-

score routine microbiological cultures’ necessity–specifically
blood ones. These are crucially obtained before initiating
antimicrobial therapy for patients with presumptive sepsis
or septic shock; this emphasis stands contingent upon a
vital condition: such diagnostic efforts should not markedly
impede the onset of antimicrobial intervention [8].

Improving sepsis outcomes [9], integrally hinges on the
principle of early detection and timely therapeutic interven-
tion. Indeed, we have a well-established correlation: prompt
management in prehospital and emergency department set-
tings is directly related to positive patient outcomes [10].
The criticality of the initial hours following symptom onset
receives underscored recommendations; however–challenges
persist: accelerating patient transfer from emergency depart-
ments to intensive care units remains an ongoing issue [11].
Overlapping clinical presentations often present clinicians
with the challenge of distinguishing sepsis from other acute
illnesses; this necessitates a high degree of vigilance and
clinical acumen [12].

This systematic review aims to collate and evaluate the
current evidence on the application of AI in laboratory tech-
nologies for the early detection and prognostication of sepsis.
By doing so, it seeks to understand the extent to which AI has
been integrated into clinical practice, identify the benefits and
challenges associated with its use, and provide a clear picture
of its efficacy and reliability.

2. Materials and Methods
Reporting Standards
This review was reported in accordance with the PRISMA
guidelines [13], and the review protocol was registered with
PROSPERO prior to the initiation of this review. The results
of the study selection process as per PRISMA has been
shown through Figure 1.

PECO Strategy
Population- The population of interest for this review com-
prised patients of any age group who were admitted to any
healthcare setting (e.g., emergency departments, intensive
care units, general wards) with suspected or confirmed sepsis.

Exposure- The exposure of interest was the application
of AI within laboratory technologies. This included the use
of machine learning algorithms, deep learning models, and
other AI-related approaches to analyze laboratory test results
for the early detection and prognostication of sepsis.

Comparator- A comparator was not deemed necessary but
was not excluded; when present, it would have been the
standard of care without the use of AI-enhanced laboratory
technologies. This might have included traditional methods
of sepsis detection, such as manual review of laboratory
results and clinical assessments.

Outcome- The primary outcomes were the accuracy of
AI-enhanced laboratory technologies in the early detection
of sepsis (sensitivity, specificity, positive predictive value,
negative predictive value) and the prognostic performance in
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predicting sepsis-related outcomes (e.g., mortality, length of
hospital stay, readmission rates).

Search Strategy
Table 1 shows the abbrevations and full forms of terms which
are used is reviews.

A comprehensive literature search was conducted across
several electronic databases, including PubMed, EMBASE,
Scopus, Web of Science, Google Scholar and IEEE Xplore,
to identify relevant studies published up to the current date.
The search strategy was designed to encompass terms related
to AI (e.g., "machine learning," "deep learning," "neural
networks"), laboratory technologies (e.g., "laboratory tests,"
"biomarkers"), and sepsis (e.g., "sepsis," "septicemia," "sys-
temic inflammatory response"). Boolean operators (AND,
OR) were used to combine search terms, as shown in Table
2.

Inclusion and Exclusion Criteria
Table 3 shows the inclusion and exclusion criteria that were
devised for this review

Data Extraction
We employed a standardized data extraction form to guaran-
tee consistency and accuracy; two independent reviewers un-
dertook this critical process. The information they extracted
from the included studies encompassed author details, publi-
cation year, study design–and detailed descriptions of patient
populations. In addition to scrutinizing the bibliographic and
methodological details, reviewers honed in on the specific
AI technology each study employed. They documented a
variety of laboratory tests analyzed via AI technologies along
with their diverse measured outcomes. The primary interest
underscored was how well these AI technologies performed
diagnostically and prognostically in early sepsis detection;
this encompassed metrics like sensitivity, specificity–positive
predictive value versus negative predictive value–as well as
any results tied to prognosis related to sepsis: mortality rates,
hospital stay duration or even re-admission frequency rates.

Quality Assessment
The methodological quality of the included studies was as-
sessed using appropriate tools based on study design. The
studies were evaluated using the Newcastle-Ottawa Scale
(NOS) which assessed bias across multiple domains [14], as
elucidated through Figure 2. Quality assessment was inde-
pendently conducted by two reviewers, with disagreements
resolved by consensus or by a third reviewer.

3. Results
Schematics of Article Selection
We initially identified potential studies by combing through
databases and registers, which yielded a total of 392 records
from the former; however, we found no additional findings
in the latter. After removing duplicate records–a task that

reduced our count by 68–we began screening with an eli-
gible pool totaling to 293 after excluding those marked as
ineligible due to automation tools: specifically, 31 of them.
The automation tools determined that all remaining records,
excluding those removed due to duplication or ineligibility,
required screening. Consequently, we pursued the retrieval
of these 293 records. Despite our efforts; however-55 reports
eluded retrieval-a circumstance which diminished the total
number of assessed eligible reports to 238. Upon eligibility
assessment, we excluded a total of 230 reports based on
several criteria: specifically, 86 didn’t respond to the pre-
defined PECO criteria; an additional amount–consisting of
59 –comprised animal-based studies and yet another group–
literature reviews contributed significantly with their count
reaching up to 63. Moreover, the unavailability of full texts
led to the exclusion of 22 reports. Following this comprehen-
sive screening and eligibility assessment, we deemed only 8
studies [15]–[22] suitable for inclusion in our review.

Assessed Bias Across Domains
The study by Calvert et al. [15] demonstrated a notably robust
methodology across all domains, with a ’Low’ bias rating in
each category, suggesting a high level of confidence in the
results. Similarly, studies by Lauritsen et al. [17], Lind et
al. [18], Lu et al. [19], Mao et al. [20], and Nemati et al.
[21], all showed a ’Low’ level of bias in each domain, indi-
cating a strong methodological framework and minimal bias.
However, Khojandi et al. [16], had some areas with greater
potential for bias; specifically, there was a ’Moderate’ bias
noted in the domains assessing deviations from intended in-
terventions (D4) and measurement of outcomes (D6). While
the study maintained a ’Low’ bias in the other domains, these
moderate concerns affected the overall assessment, resulting
in a ’Moderate’ overall bias rating. Tang et al. [22], also pre-
sented a ’Moderate’ bias in two domains. The first was bias
due to confounding (D1), which raises questions about other
variables possibly influencing the outcomes. The second was
bias due to missing data (D5), indicating that some relevant
data might not have been accounted for or reported. Despite
these moderate concerns, the remaining domains were rated
’Low’ for bias, leading to an overall ’Moderate’ bias rating.
Overall, though, the majority of the studies included in the
review exhibited a ’Low’ bias across all domains.

Examined Sample Size and Criteria
Table 4 presents the selected studies [15]–[22] that applied
various forms of AI to the detection and prognostication of
sepsis and other associated assessments.

Calvert et al. [15] conducted a study that scrutinized an
extensive dataset of 122,672 hospital stays; they selectively
concentrated on patients aged 45 and above who had ex-
perienced a minimum hospitalization period of 96 hours.
The researchers presumably chose this specific patient group
because prolonged stays in hospitals and advancing age are
correlated with an escalated risk of sepsis. Khojandi et al.
[16] conducted research where they analyzed an even more
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Database Search string

PubMed
("artificial intelligence" OR "machine learning" OR "deep
learning" OR "neural networks") AND ("laboratory
tests" OR "biomarkers") AND "sepsis"

EMBASE
("machine intelligence" OR "computational learning" OR "AI")
AND ("laboratory diagnostics" OR "clinical markers") AND
"septicemia"

Scopus
("predictive analytics" OR "AI" OR "neural computing") AND
("diagnostic tests" OR "laboratory data") AND
"systemic inflammatory response"

Web of Science
("data mining" OR "algorithmic learning" OR "artificial neural
networks") AND ("laboratory findings" OR "molecular markers")
AND "sepsis syndrome"

Google Scholar
("algorithm-based" OR "machine
prediction" OR "deep computation") AND
("test results" OR "lab values") AND "sepsis"

IEEE Xplore
("intelligent systems" OR "learning systems" OR "deep machine
learning") AND ("biomarker identification" OR "lab
diagnostics") AND "septic shock"

Table 2: Search strings utilised across the assessed databases

Criteria type Inclusion criteria Exclusion criteria

Study design

- Cohort studies
- Case-control studies
- Cross-sectional studies
- In-vitro studies
- Experimental studies

- Conference abstracts
- Case reports
- Commentaries
- Editorials
-Literature reviews

Study protocol
- Studies describing AI application in
lab technologies for early detection
or prognostication of sepsis

- Studies not focusing on AI
- Studies not related to
laboratory technologies
- Studies not addressing sepsis
detection or prognostication

Population
- Patients of any age group admitted
to healthcare settings with
suspected or confirmed sepsis

-

Outcome

- Accuracy of AI in lab
technologies for early sepsis detection
- Prognostic performance for
sepsis-related outcomes

-

Table 3: Selection criteria devised for this review

extensive dataset of 332,006 entries. The data focused on
two key periods: the hours immediately after admission and
the interval preceding sepsis’ clinical manifestation - aiming
for early detection critical to enhance patient outcomes via
prompt treatment. Lauritsen et al. [17] took an approach of
retrospective analysis, exploring 3,126 contacts from Danish
hospitals over a seven-year period; this longitudinal dataset
offered insights into sepsis evolution and the extended times-
pan potentiality of AI for early detection.

Lind et al. [18] conducted a specialized study, exam-
ining an 8,131 patient-cohort of adult recipients of allo-
HCT at the Fred Hutchinson center. This population’s med-
ical treatment nature heightens their susceptibility to sep-
sis; this is well-known. Lu et al. [19] selected a focused
cohort of 684 trauma patients as their study subject due
to sepsis’s high risk and rapid progression following trau-
matic injuries; Mao et al., conducted another relevant study.
Its vast dataset-encompassing 684,443 hospital encounters-
distinguished [20], through a comprehensive evaluation of
AI’s role in a heterogenous patient population within the
hospital.

In contrast to the aforementioned studies, Nemati et al.

[21], utilized a development dataset of 27,527 patient en-
counters and a validation dataset exceeding 52,000. The
research deliberately omitted patients who met Sepsis-3 cri-
teria within four hours of their ICU admission; this focused
on evaluating AI’s predictive capability for sepsis beyond
an immediate timeframe post-ICU entry. Tang et al. [22],
directed their study towards a dataset of 2,453 COVID-
19 patients; this timely and critical patient group–given the
pandemic situation–faces elevated risks for developing sepsis
as a secondary complication.

AI Protocols Assessed
Calvert et al. [15], employed gradient-boosted decision
trees, specifically XGBoost, an ensemble learning method
renowned for its predictive accuracy. This method was likely
chosen for its ability to handle large datasets and complex
feature interactions, which were characteristic of the 122,672
hospital stays analyzed in their study. Khojandi et al. [16]
utilized random forest classifiers, a robust ensemble learning
technique that combines the predictions of multiple decision
trees to improve predictive accuracy and control over-fitting.
The study’s expansive dataset of 332,006 entries indicated
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that random forest classifiers were well-suited to manage the
substantial variability within the data. Lauritsen et al. [17],
adopted a CNN-LSTM combination model, an AI architec-
ture that leverages both the feature extraction capabilities
of CNNs and the sequential data processing strengths of
LSTMs. This choice was particularly appropriate for analyz-
ing the 3,126 contacts from Danish hospitals, capturing both
spatial and temporal patterns within the data.

Lind et al. [18] implemented a SuperLearner algorithm,
designed to optimize the area under the AUC. The Super-
Learner is an ensemble method that uses cross-validation
to find the optimal combination of prediction algorithms,
which was applied to the study of 8,131 PBIs in allo-HCT
recipients. Lu et al. [19], chose the LASSO, a regression
analysis method that performs both variable selection and
regularization to enhance the prediction accuracy and inter-
pretability of the statistical model. LASSO was applied to a
cohort of 684 trauma patients, facilitating the identification of
the most relevant predictors of sepsis in a high-dimensional
dataset. Mao et al. [20], utilized gradient tree boosting,
another ensemble method that builds models in a stage-wise
fashion and is known for its predictive power and flexibility.
The vast dataset of 684,443 hospital encounters analyzed in
their study could benefit from the method’s capacity to model
complex interactions between variables.

Nemati et al. [21], developed the AISE, an AI model
whose details, while not specified in the provided context,
were indicative of a tailored solution designed to address
the specific challenges of sepsis detection in over 79,527
patient encounters. Tang et al. [22], also applied XGBoost to
a dataset of 2,453 patients with COVID-19. XGBoost’s appli-
cation to this dataset was likely due to its strong performance
in classification tasks, which was essential for identifying
sepsis in COVID-19 patients, where the underlying patterns
could be highly complex and non-linear.

Sensitivity and Specificity Values Observed
Calvert et al. [15], reported an AUROC of 0.917, which
indicated a high degree of discriminative ability for their
AI model, XGBoost. The model’s sensitivity and specificity
were also relatively high, at 0.799 and 0.860 respectively,
demonstrating a balanced ability to identify true positives
and true negatives. The accuracy of the model stood at
0.848, suggesting that the model correctly classified a high
percentage of cases. Khojandi et al. [16] did not provide an
exact AUROC value but indicated a range for sensitivity and
specificity, up to 67% and 63% respectively. This suggests
some variability in the model’s performance, with a tendency
toward lower detection rates. The accuracy was reported with
a wide range, from 65% to 98.63%, indicating that in some
scenarios, the model performed exceptionally well, while in
others, its performance was closer to chance.

Lauritsen et al. [17], reported a wide range for sensitivity,
from 0.09 to 1.00, and for specificity, from 0.10 to 0.93. The
wide range may reflect variations in the model’s performance
across different settings or thresholds used to define sepsis.

However, the absence of an AUROC or accuracy value in
the provided data made it difficult to assess the overall
performance of the CNN-LSTM combination model used in
the study. Lind et al. [18] provided an AUROC value of 0.85,
indicating good discriminative power for the SuperLearner
optimized AUC model. However, the study did not report
sensitivity, specificity, or accuracy, which limits the ability
to appraise the model’s performance comprehensively. Lu et
al. [19], reported an AUROC of 0.799, sensitivity of 64.0%,
and specificity of 82.0%. These metrics suggest that the
model, LASSO, had reasonable discriminative ability but
tended to miss a higher proportion of true positive cases
(lower sensitivity) while correctly identifying a majority of
true negatives (higher specificity).

Mao et al. [20], achieved an AUROC of 0.92, which
suggests excellent performance by the gradient tree boost-
ing model. However, the study did not provide sensitivity,
specificity, or accuracy, precluding a full assessment of the
model’s performance. Nemati et al. [21], reported an AUROC
that varied between 0.83 and 0.85, with a fixed sensitivity of
85% and a specificity range of 64% to 72%. These findings
indicate that the Artificial Intelligence Sepsis Expert (AISE)
was quite effective at detecting true positive cases but had
a moderate rate of false positive outcomes. Tang et al. [22],
presented an AUROC of 0.9213 for their XGBoost model,
with a high sensitivity of 97.17% and a specificity of 82.05%.
These values denote an excellent predictive performance
with a very high true positive rate and a good true negative
rate, suggesting that the model was particularly effective in
identifying sepsis among COVID-19 patients.

4. Discussion
Our findings revealed varied performance across different
studies, with each model exhibiting unique strengths and
limitations. Calvert et al. [15] showcased a model with a high
degree of accuracy and an excellent balance between sensi-
tivity and specificity, implying a robust overall performance
in the identification of sepsis. In contrast, Khojandi et al.
[16], presented a model with less consistency, as evidenced
by the wide range of reported accuracy and the absence
of an exact AUROC value, which may indicate variability
in performance across different clinical scenarios or patient
populations.

The model analyzed by Lauritsen et al. [17], utilizing
a CNN-LSTM approach, demonstrated significant variabil-
ity in its sensitivity and specificity ranges, suggesting that
its performance might be highly dependent on the specific
operational thresholds and clinical settings, yet the lack of
comprehensive performance metrics such as AUROC and
accuracy impeded a definitive conclusion regarding its ef-
ficacy. Lind et al. [18], reported an AI model with good
discriminative power as suggested by its AUROC value, but
the study’s omission of sensitivity, specificity, and accuracy
data limited a full evaluation of its clinical utility.

Lu et al. [19], presented a model with moderate discrimi-
native ability, as reflected by its AUROC, but with a tendency
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Figure 1: PRISMA protocol representation of the study selection protocol for the review

to miss a higher number of true positives, which could
limit its application in clinical settings where high sensitivity
is paramount. Mao et al. [20], reported on a model with
excellent discriminative ability, yet the lack of reported sen-
sitivity, specificity, and accuracy left gaps in understanding
the model’s practical performance.

Nemati et al. [21], offered insights into a model that was
adept at identifying true positives with a high sensitivity,
although the model’s specificity indicated a moderate rate of
false positives, which could potentially lead to over-treatment
or alarm fatigue in clinical practice. Tang et al. [22] presented
a model with superior performance in both sensitivity and

specificity, indicating an exceptional capability in discerning
sepsis, particularly in the context of COVID-19 patients,
which could have important implications for managing this
specific patient cohort.

Our review intersects with the observations of Yang et al.
[23], in the recognition of AI’s capabilities to augment the
early detection and precise treatment of sepsis, as well as the
prognostic assessment of the condition. Both studies concur
on the pivotal role of high-quality data, typically abundant in
ICU settings, as a critical enabler for AI’s efficacy. Where our
paths diverge, however, is in the scope of AI’s integration in
sepsis management. Yang et al. [23], explore AI’s extensive
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Study Dataset size Patient criteria AI model type AUROC Sensitivity Specificity Accuracy Overall inferences pertaining to performance of AI

Calvert et al [15] 122,672 stays Patients aged 45+
with hospital stays of at least 96 hours

Gradient-boosted
decision trees (XGBoost) 0.917 0.799 0.860 0.848

- MLD superior in
specificity, PPV, NPV, DOR, accuracy
- Strong diagnostic
capability for early sepsis detection

Khojandi et al [16] 332,006 Early hours post-admission and period
leading up to sepsis Random forest classifiers N/A Up to 67% Up to 63% 65-98.63%

- High potential of ML for continuous monitoring
- Highest predictive accuracy within first
12 hours post-admission

Lauritsen et al [17] 3126 contacts Retrospective data
from Danish hospitals over 7 years CNN-LSTM combination N/A 0.09-1.00 0.10-0.93 Unspecified

- Models show
significant performance variations
- Some require
improvements in sensitivity and precision

Lind et al [18] 8131 PBIs Adult allo-HCT recipients at Fred
Hutchinson SuperLearner optimized AUC 0.85 N/A N/A N/A

- Superior prognostic accuracy for outcomes
- Potential for timely sepsis detection
among allo-HCT recipients

Lu et al [19] 684 patients Trauma patients LASSO 0.799 64.0% 82.0% N/A

- TSS shows good predictive capability (AUC 0.799)
-Better than individual predictors and SOFA score
- Stratifies patients into risk
categories correlated with sepsis incidence
- Demonstrates good
calibration and reliability for clinical use

Mao et al [20] 684,443 encounters Hospital patients Gradient Tree Boosting 0.92 N/A N/A N/A

- InSight algorithm exceptional in
detecting and predicting sepsis
- High AUROC scores, especially for septic
shock prediction four hours before onset
- Robust to missing data and performs
consistently across multiple institutions

Nemati et al [21] Development: 27,527;
Validation: 52,000+

Excluded patients
who met Sepsis-3 prior to or within
4 hours of ICU admission.

Artificial
Intelligence Sepsis Expert 0.83-0.85 Fixed at 85% 64%-72% -

- Good discriminative ability
with slight decline over time
- Higher prediction accuracy closer to event onset

Tang et al [22] 2,453 Patients with COVID-19 XGBoost 0.9213 97.17% 82.05% -

- Coagulation function indicators highly
predictive of viral sepsis caused by SARS-CoV-2
- Early warning of sepsis in COVID-19
patients was possible due to the ML model

Table 4: Studies included in the review and their observed assessments

Figure 2: Bias assessment of the selected studies across
different domains

transformative potential within the field and its implications
for future healthcare practices, encompassing subtyping anal-
ysis and precision medicine, areas that our study may not
have probed as deeply. Additionally, while Yang et al. [23],
advocate for AI’s fluid integration into healthcare, our study
may have steered toward a more granular investigation of
AI’s specific performance metrics and applications.

Correspondingly, we find commonality with Yan et al.
[24], in the assertion that the integration of unstructured
clinical text with structured data can significantly enhance
the performance of machine learning models in detecting
sepsis early on. The necessity for comprehensive datasets that
amalgamate various clinical data modalities is a recurring
theme in both studies. On the other hand, Yan et al. [24],
focus intently on the utilization of unstructured clinical text
and how it bolsters the predictive capabilities of AI models.

They also discuss the lack of inclusion of longitudinal patient
data extending beyond the current care episode, which may
contrast with our study if we have included such temporal
data. Moreover, Yan et al. [24], discuss the issues surrounding
the application of models developed in ICU settings to gen-
eral wards, an area that may differ from our study’s findings
if our focus was on a narrower AI application or a different
care setting.

Comparing our findings with the review by Hassan et
al. [25], there is a synergy in our mutual exploration of
the predictors used in AI algorithms for predicting sepsis,
emphasizing the import of specific clinical features. This
synergy allows us to juxtapose the average sensitivity and
specificity metrics from their review against the performance
of our study’s AI models. The divergence could be evident
if our study also evaluated the impact of different predictors
on the models’ predictive timeframes and power. Should our
study have employed a novel set of predictors or adopted
alternative AI techniques, this would mark a salient departure
from the findings of Hassan et al. [25], who provide a meta-
analysis of sensitivity and specificity across multiple studies
and discuss the influence of predictor types on predictive
outcomes.

Contemporary protocols for the management of sepsis
underscore the imperative of prompt therapeutic interven-
tions, while an overarching principle remains the axiom that
prophylactic measures are superior to remedial strategies. In
this context, an array of AI frameworks have been archi-
tected to prognosticate the advent of sepsis [26]. Longitudinal
analyses have substantiated that AI-enabled surveillance of
patient clinical streams can presage sepsis with a temporal
lead, achieving predictive accuracies that approach the 90th
percentile mark, thereby markedly surpassing the prognostic
capacities of conventional clinical acuity indices [17], [26]–
[29].

To surmount this limitation, investigative efforts have co-
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alesced around the exploitation of clinical parameters that
are routinely captured across diverse medical environments,
including ambulatory care settings and emergency depart-
ments, yielding consistently affirmative scholarly outcomes
[30]–[32]. Syntheses of extant literature have illuminated that
AI-facilitated early warning systems manifest a heightened
impact within the precincts of emergency care and general
inpatient wards as opposed to intensive care contexts [33].
In an innovative departure from traditional clinical datasets,
specific investigations have extended the predictive architec-
ture by integrating biomarker data gleaned from genomic
profiling, thereby fostering the construction of algorithmic
models proficient in the identification of patients at elevated
risk for post-surgical infections or sepsis in the initial triad of
postoperative days [34].

The heterogeneity inherent in infection loci and the id-
iosyncratic physiological responses of individual patients
pose formidable obstacles to the accurate nosological char-
acterization of sepsis [35]. Scholarly discourse suggests that
the deployment of analytical tools predicated on expansive
datasets and sophisticated machine learning techniques can
amplify both the sensitivity and precision of sepsis diag-
nostics [36]–[38]. In a departure from traditional structured
clinical datasets, which typically encapsulate patient vitals
and laboratory test results [39], diagnostic frameworks that
integrate unstructured narrative data have shown potential.
Such paradigms have been reported to augment the early
diagnosis of sepsis by a third and to curtail the incidence of
false-positive determinations by a sixth [37]. For instance,
algorithmic systems trained on radiographic imagery such as
chest X-rays have achieved diagnostic concordance for acute
respiratory distress syndrome in approximately nine out of
ten patients [40].

A seminal, multicentric, prospective cohort investigation
has recently divulged a substantive association between the
proactive deployment of AI-driven sepsis alert mechanisms
and the attenuation of in-patient mortality rates, the fre-
quency of organ dysfunction, and the duration of hospi-
talization [41]. These investigative findings collectively re-
inforce the notion that AI holds considerable promise for
the stringent early detection of sepsis and the consequent
enhancement of patient prognoses. Notwithstanding, extant
models encapsulate but a subset of potential clinical data
variables, leaving a vast expanse of pertinent medical data
untapped. This recognition signals an expansive potential for
refining the diagnostic acumen of AI in medical practice. For
AI-derived predictive analytics to gain traction in clinical
utility, the output of such models necessitates a degree of
interpretability. Model predictions must be rendered in a for-
mat that is intelligible and actionable by healthcare providers,
engendering their confidence in the technology and enabling
the discernment of potentially anomalous predictions [42].
To this end, strides have been made in the development of
interpretable AI frameworks, wherein the logic underpinning
predictions is rendered transparent, accessible, and amenable
to visualization [38]–[42], thus potentiating the clinical valor

of such technologies.

Study-Specific Limitations

Calvert et al. [15], reported a high area under the AUROC
of 0.917 for their XGBoost model, reflecting a superior
diagnostic ability. The model’s sensitivity and specificity,
at 0.799 and 0.860 respectively, along with an accuracy
of 0.848, pointed to an effective balance in detecting true
positive and true negative cases. However, the study did not
offer insights into the model’s performance across different
patient subgroups or settings, which could be relevant for
its generalizability. Khojandi et al. [16], while not providing
an AUROC, disclosed sensitivity and specificity rates up to
67% and 63%, respectively. These rates suggested room for
improvement in the model’s sensitivity and precision. The
absence of an AUROC value limited a holistic understanding
of the model’s discriminative power.

Lauritsen et al. [17], offered a broad range for sensitivity
and specificity, but the omission of AUROC and accuracy
values precluded a comprehensive evaluation of the model’s
overall effectiveness. Without these metrics, the relative per-
formance of the model compared to other benchmarks re-
mained unclear. Lind et al. [18] presented an AUROC of 0.85,
indicative of reliable model performance. Nonetheless, the
lack of sensitivity, specificity, and accuracy metrics restricted
a thorough assessment of the model’s diagnostic utility, par-
ticularly in terms of its ability to correctly classify individual
cases.

The study by Lu et al. [19], reported an AUROC of 0.799,
suggesting a moderate to high capability in distinguishing
between sepsis cases and non-cases. The sensitivity and
specificity values indicated a propensity for the model to miss
some true positive cases while correctly identifying a major-
ity of true negatives. A detailed analysis of the circumstances
leading to missed cases and false positives was not provided,
which could be essential for clinical application. Mao et al.
[20] reported a high AUROC of 0.92, signalling excellent
model performance. However, the lack of additional perfor-
mance metrics such as sensitivity, specificity, and accuracy
did not allow for a full evaluation of the model’s diagnostic
capabilities, particularly in different clinical contexts or pa-
tient populations.

Nemati et al. [21], revealed an AUROC range between
0.83 and 0.85, consistent sensitivity of 85%, and a specificity
range from 64% to 72%. While these findings suggested
a strong capacity for identifying true positive cases, the
variability in specificity underscored the need for refinement
in reducing false positives. Tang et al. [22], reported an
outstanding AUROC of 0.9213, with high sensitivity and
good specificity, underscoring the model’s potential in timely
and accurate sepsis detection. However, the study focused
on a specific patient population-those with COVID-19-which
might limit the applicability of the findings to the broader
population of patients at risk for sepsis.
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Recommendations
Based on our findings, the following recommendations can
be made to enhance the application of artificial intelligence
models in the detection of sepsis;

1) Models demonstrating high AUROC values, such as
those reported in several studies, should be further
validated in diverse clinical settings to confirm their
robustness and generalizability. This is especially crit-
ical for models that have shown superior diagnostic
capabilities with balanced sensitivity and specificity.

2) For models with lower sensitivity and specificity rates,
efforts should be directed toward improving their diag-
nostic accuracy. This may involve refining algorithms,
incorporating additional relevant features, or employ-
ing more advanced machine learning techniques.

3) The importance of reporting a full set of performance
metrics, including AUROC, sensitivity, specificity, and
accuracy, cannot be overstated. Future research should
ensure these metrics are included to provide a compre-
hensive evaluation of the model’s performance.

4) Models that show variability in performance metrics
suggest the potential need for customization or adjust-
ment according to specific clinical scenarios or patient
populations.

5) Continuous improvement should be pursued, espe-
cially for models that show a high rate of false positives
or false negatives. This could involve iterative training
with larger datasets, cross-validation across different
patient cohorts, and refinement of feature selection
processes.

6) Given the promising results of AI models in identifying
sepsis among specific populations, such as COVID-19
patients, further research should explore the applica-
bility of these models to other patient groups at risk for
sepsis.

7) The integration of AI models into clinical workflows
should be done cautiously, with ongoing monitoring
and evaluation to ensure that they support, rather
than hinder, clinical decision-making processes. The
ultimate goal is to leverage AI to improve patient
outcomes while maintaining patient safety and care
quality.

5. Conclusion
The findings from the array of studies included in the re-
view consistently demonstrated that AI models can achieve
high discriminative performance, as evidenced by generally
AUROC values across the board. These models varied in
terms of sensitivity and specificity, with some achieving a
commendable balance, thereby potentially offering signif-
icant clinical value in identifying true sepsis cases while
minimizing false positives. It was observed that the models’
performance was not uniform, with certain AI approaches
displaying excellent predictive abilities in specific settings,
such as within the critical initial hours of patient admission.
However, the variability in sensitivity and specificity among

the different models highlighted the intricate nature of the
sepsis detection challenge. AI models tended to differ in their
ability to generalize across diverse clinical scenarios, which
could be attributed to differences in patient populations,
data heterogeneity, and the specificities of the algorithms
employed. The studies suggested that the integration of AI
into clinical workflows could potentially enhance the timely
identification and treatment of sepsis, which is crucial for
improving patient outcomes. Nevertheless, the noted vari-
ability and the absence of comprehensive performance met-
rics in some studies underscore the need for standardization
in reporting and further validation of these AI tools. Future
research should focus on addressing these gaps by refining AI
algorithms for improved accuracy, sensitivity, and specificity,
and by conducting rigorous evaluations of their real-world
clinical impact.
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