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Abstract Background and Introduction: Osteocytes, the most numerous bone cells, create sclerostin. The sclerostin
protein sequence predictive model helps create novel medications and produce alveolar bone in periodontitis and other oral
bone illnesses, including osteoporosis. Neural networks examine protein variants for protein engineering and predict their
structure and function impacts. Proteins with improved function and stability have been engineered using LLMs and CNNs.
Sequence-based models, especially protein LLMs, predict variation effects, fitness, post-translational modifications, biophysical
properties, and protein structure. CNNs trained on structural data also improve enzyme function. It is unknown if these
models differ or forecast similarly. This study seeks Pre-trained language models to predict Wnt-Sclerostin Protein sequences
in alveolar bone formation. Methods: Using UniProt ID, sclerostin and related proteins (Q9BQB4, Q9BQB4-1, Q9BQB4-
2, Q6X4U4, O75197) were identified and quality-checked. Deepbio analyzed FASTA sequences. Deep Bio is a one-stop
web service allowing academics to build any biological deep-learning architecture. DeepBIO used deep learning to improve
and visualize biological sequencing data. LLM BASED Reformer, AAPNP, TEXTRGNN, VDCNN, and RNN_CNN split
sequence-based datasets into test and training. We randomly partitioned each dataset into 1000 training and 200 testing sets to
change hyperparameters and measure performance. Results: Reformer, AAPNP, TEXTRGNN, VDCNN, RNN CNN exhibit
93, 64, 51, 91, and 64 percent accuracy. Conclusion: Protein sequence-based massive language models are growing, and R&D
is solving complicated challenges.

Key Words LLM, Natural Language Processing, Sclerostin, Alveolar Bone Formation, Periodontitis, Dental, Reformer,
AAPNP, TEXTRGNN, VDCNN, RNN_CNN

1. Introduction The most prevalent cells in bone tissue [6]-[8]], osteocytes,

In recent years, there has been a major evolution in our are the main producers of the protein sclerostin. Attaching

understanding of bone health and regulation [T], [2]. The itsofalf to tl.le receptors LRP.5/6 and preventing ﬁ-cater'lin frf)m
Wt signaling pathway is one of the major mechanisms being activated is a negative regulator of the Wnt signaling

controlling bone homeostasis; sclerostin is a critical regulator cas.ca}de. Sclerostu.l suppress.es ostegblast Prohferatlon aqd
in this system. The purpose of this article is to present a activity through this mechanism, which ultimately results in
thorough summary of the functions of sclerostin and Wnt lower bong mass and 1nh1b1t§ the <':reat1on of new bone [J].
signaling in bone health. The Wnt signaling system tightly The Wnt signaling pathway is activated, favorably control-

regulates bone resorption and formation. It comprises the /3- ling osteoblas.togenesi?. and encouraging new bone growth.
catenin-dependent canonical Wnt pathway and the S-catenin- When Wnt ligands, like Wntl, Wn.t3a, anq Wnt10b, en-
independent non-canonical Wnt pathway [3], [4]. While gage with LRP5/6 receptors, [3-catenin in the nucleus-

osteoclastogenesis, bone resorption, and bone remodeling activator is stabilized and accumulates, and target genes
are involved in the non-canonical pathway, the canonical important in osteoblast differentiation, and function are ex-

pathway controls osteoblast proliferation, differentiation, and pressed j ' On. the other hand, Sclerostin b,i nds to
survival [3]. LRP5/6 and inhibits this process by stopping -catenin from
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activating [13], [[14].

Numerous bone disorders have been linked to the dereg-
ulation of sclerostin and abnormalities in the Wnt signal-
ing pathway. For example, osteoporosis, osteogenesis imper-
fecta, and juvenile idiopathic arthritis have been linked to
elevated sclerostin levels and decreased Wnt signaling activ-
ity [15]-[18]]. These abnormalities weaken bones and raise
fracture risk by decreasing bone production and increasing
bone resorption. Therapeutic strategies that target sclerostin
have been investigated because of its critical function in
maintaining bone homeostasis.

In periodontitis [19] and other problems involving the
mouth’s bone, such as osteoporosis, the predictive model of
the sclerostin protein sequences helps create healthy alve-
olar bone and can be useful in designing novel medica-
tions. Neural networks and other machine learning models
are increasingly being utilized to investigate and forecast
the impacts of protein variations on structure and function
in protein engineering [18]—[20]. Convolutional neural net-
works (CNNs) and large language models (LLMs) [21]-[23]]
have effectively created proteins with improved stability and
function. Protein LLMs [24], particularly sequence-based
models, have successfully predicted protein structure, post-
translational modifications, variation effects, and biophysical
characteristics. CNNs trained on structural data have also
successfully increased enzyme function activity. It’s unclear
whether these models are fundamentally different or pro-
duce comparable forecasts. This work aims to predict Wnt-
Sclerostin protein sequences in alveolar bone formation using
pre-trained language models.

2. Methods

The following sclerostin and related proteins Q9BQB4,
Q9BQB4-1, Q9BQB4-2, Q6X4U4, and 075197 were down-
loaded using UniProt id, and their sequences were recognized
and quality-checked. The Deepbio tool was used for FASTA
sequences.

Deep Bio is a one-stop shop for researchers wishing to
create a deep-learning architecture for any biological subject.
DeepBIO used deep learning techniques to evaluate, im-
prove, and visualize biological sequencing data. Sequence-
based datasets were divided into training and test sets by
Deep Bio. We randomly divided each dataset into 1000
training and 200 testing sets to modify hyperparameters and
assess performance.

Large language models and other algorithms for sequence
prediction used were Reformer, AAPNP, TEXTRGNN, VD-
CNN, RNN_CNN (see Table[T).

Reformer

The Reformer is a natural language processing Al model.
In 2019, Google researchers published "Reformer: The Ef-
ficient Transformer," introducing it. The Reformer model
uses the Transformer architecture popularised by BERT and
GPT (Generative Pre-trained Transformer). Reformer effi-
ciency in managing long-range dependencies is a significant

Cuda: TRUE2 TRUE3
Seed: 43 43
num_workers: 4 4
num_class: 2 2

Kmer: 3 3
save_figure_type: | png png

Mode: train-test train-test
Type: prot prot
Model: VDCNN RNN_CNN
datatype: userprovide userprovide
interval_log: 10 10
interval_valid: 1 1
interval_test: 1 1

Epoch: 50 50
optimizer: Adam Adam
loss_func: CE CE
batch_size: 32 32

LR: 0.0001 0.0001
Reg: 0.0025 0.0025
Gamma: 2 2

Alpha: 0.25 0.25
max_len: 52 52
dim_embedding: 32 32
minimode: modelCompare | modelCompare
if _use_FL: 0 0
if_data_aug: 1 1
if_data_enh: 0 0

CDHit: 1] 1]

Table 1: Model parameters for hyper tuning and epoch itera-
tions

contribution. Compared to classic Transformers. It reduces
long sequence attention time and memory complexity with
"Locality-Sensitive Hashing" (LSH). Reversible residual lay-
ers make Reformer training memory-efficient. This is crucial
for long sequences, as regular Transformers often struggle
with memory.

AAPNP

AAPNP, which stands for Approximation of Personalized
Propagation of Neural Prediction, is a novel approach
for semi-supervised learning on graphs. It combines the
strengths of two powerful techniques: Personalized PageR-
ank, which uses Google’s PageRank to rank network nodes
by neighbor importance, and a "seed" node. This means
a node’s value depends on its connections and neighbors’
connections, considering a specific focus. Neural Networks:
These powerful models can learn complex relationships and
patterns from data, often achieving impressive results in
many tasks.

AAPNP Leverages these Two Techniques in a Two-step Process

Predict: Features are used by a neural network to forecast
each node. First, guesses gather local information around
each node. Propagate: Then, Personalized PageRank is ad-
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justed to "spread" these predictions around the graph, taking
into account nearby nodes and the focus point. This propaga-
tion stage refines initial predictions and incorporates global
context by sharing information between nodes.

AAPNP’s fundamental benefit is its ability to use in-
formation from a vast, configurable neighborhood around
each node while preserving computational efficiency and a
minimum number of parameters. This makes it useful for
semi-supervised classification, where you have little labeled
data but a big network of unlabeled data.

TextRGNN

A new graph neural network-based text classification ar-
chitecture is Residual Graph Neural Networks (GNNs). It
was introduced in a December 2021 research report and has
performed well in many datasets.

Here is a breakdown of TextRGNN’s key features;

1) Residual Connections: TextRGNN, unlike shallow
GNN models typically using two convolutional lay-
ers, utilizes residual connections for text classification.
Information flows directly from earlier to later stages
due to these linkages skipping layers. TextRGNN can
capture text data’s short- and long-range dependencies,
enhancing accuracy.

2) Wider Receptive Field: TextRGNN'’s residual connec-
tions enable each node to obtain information from a
greater neighborhood of other nodes. This helps the
model grasp sentence or document context and word-
phrase relationships.

3) Over-Smoothing Suppression: GNNs may experience
over-smoothing when node features become similar
after multiple message-passing steps. This makes it
harder for the model to discriminate text portions.
TextRGNN prevents features from homogenizing, pre-
serving their discriminative value.

TextRGNN uses a probabilistic language model (PLM) to
initialize graph node embeddings to improve semantic infor-
mation capture. This uses the PLM’s word relationships and
syntax to enrich the GNN’s message-passing process.

VDCNN

VDCNN, or Very Deep Convolutional Neural Network, is
an architecture designed for text classification. It uses small
convolutions and pooling operations at the character level to
obtain outstanding results. VDCNN breakdown:

Architectural Modularity

Choose from 9, 17, 29, and 49 layers to suit dataset sizes and
complexity.

Character-level Processing

Works directly with text characters to capture fine-grained
classification information.
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Figure 1: The data’s positive (train) and negative (test)

Pooling and Small Convolutions

Uses 3 or 5 filter sizes in convolutional layers with max
pooling to reduce dimensionality, reduce the computational
cost, and improve noise resistance.

Multiple Nonlinear Activations

Non-linearity from ReLU activations throughout the network
improves feature extraction and representation. Global aver-
age pooling aggregates information from all feature maps in
the final layer to achieve efficient categorization, collecting
global context.

RNN_CNN
RNN-CNN, or Recurrent Neural Network-Convolutional
Neural Network, is a powerful deep learning architecture
that uses its capabilities to solve complicated problems,
especially in NLP and computer vision.Text or video input
data is preprocessed before being fed into the network. This
may entail text tokenization or video frame extraction. CNN
Extraction of Features

The CNN uses convolutional layers to extract local in-
formation from preprocessed input. These attributes capture
Edges, textures, shapes in photographs, word frequencies,
and grammatical structures in text.In RNN Sequence Mod-
eling, retrieved features are input into the RNN. The RNN
successively processes features and stores their associations
in its memory. Using processed features and internal mem-
ory, the RNN generates the required output. This could be a
classification label, caption, or sequence prediction.

3. Results

The study reveals that prediction accuracy varies across pro-

tein structures, with LLMs yielding good accuracy. This re-

flects the bias/variance dilemma in machine learning, where

convolution layers have an inductive bias for spatial data.
The "sensitivity" of Reformer, AAPNP, TEXTRGNN,

VDCNN, and RNN CNN is 0.88, 0.48, 0.87, and 0.66 for TP
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Figure 2: The accuracy of the multiple models

Model Name | ACC Sensitivity | Specificity | AUC
Reformer 0.885 | 0.88 0.89 0.936
APPNP 0.56 0.48 0.64 0.614
TextRGNN 0.5 0 1 0.511
VDCNN 0.875 | 0.87 0.88 0.914
RNN_CNN 0.625 | 0.66 0.59 0.649

Table 2: The accuracy of Reformer, AAPNP, TEXTRGNN,
VDCNN, and RNN_CNN which show 93%, 64%,51%, 91%
AND 64 %

/ (TP + FN). The model’s ability to correctly identify negative
cases is known as its specificity or genuine negative rate.
The results show that the specificities of Reformer, AAPNP,
TEXTRGNN, VDCNN, and RNN CNN are TN / (TN + FP)
-0.89, 0.64,1, 0.88, and 0.59, respectively.

Roc Curve

The Receiver Operating Characteristic demonstrates how cat-
egorization thresholds affect a model’s true positive rate (sen-
sitivity) and false positive rate (1 - specificity) (ROC). The
ROC curve in the upper left corner of the plot demonstrates
that Reformer’s VDCNN is accurate, whereas AAPNP, TEX-
TRGNN, and RNN CNN are moderate.

Precision Recall Curve

The precision-recall curve shows binary classifiers with vary-
ing probability thresholds’ recall-precision trade-off (PRC).
Recall is the percentage of accurately expected positives,
whereas precision is the percentage of positive predictions.
This model’s unequal class performance is shown. AUC-PR
is a common statistic for classifier performance. Reformer

Precision-Recall curve
o

True Positive Rate
Precision

Y] 0z ad 06
False Positive Rate

Figure 3: The ROC and precision-recall curve of the plot
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Figure 4: The epoch plot of all models
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Figure 5: The shap values prediction

VDCNN model performance improves with higher AUC-PR
values.

An epoch plot graphs machine learning model accuracy
and loss over training. It detects overfitting and other model
flaws well. Etoch plots display the number of epochs or
iterations the model was trained on on the x-axis. Model
accuracy or loss is represented on the y-axis. The loss shows

% how well the model predicts an input’s output. Accuracy

measures the model’s prediction accuracy.

SHAP Values

~ Machine-learning models calculate each feature’s prediction
" value. All potential feature combinations and their relative

contributions to a prediction when combined with a subset of
features are analyzed to compute them. SHAP red is positive
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Figure 7: Umap plot of data

when a feature improves prediction. Negative SHAP blue
features are less predictive.

Upset Plot
Comparison of intersection diameters shows the group fre-
quency of common elements. Larger junctions indicate more
group overlap than smaller crossings. Vertical UpSet plots
show crossings as rows and sets as matrix columns. Every
row has filled intersection cells showing row relationships.
UMAP shows clustering patterns in a weighted graph
using high-dimensional data, with edge strength indicat-
ing "near" points. Projecting this graph reduces its size.
Data demonstrate algorithm clustering. UMAP embeds high-
dimensional data in low-dimensional space using nonlinear
dimensionality reduction. It expects high-dimensional data
points to reside near low-dimensional space.

4. Discussion

Understanding the mechanisms and regulation of sclerostin
protein sequences can provide insights into developing ther-
apies for various bone-related disorders, including those af-
fecting the alveolar bone. Protein sequence prediction using
Large Language Models (LLMs) [24], [25] is a rapidly
emerging field with exciting protein engineering and drug
discovery possibilities. LLMs trained on massive protein
databases can learn the underlying patterns and rules of

protein sequences. This allows them to generate new se-
quences with desired properties, like increased stability, spe-
cific binding affinities, or even new functionalities. LLMs can
statistically predict the most likely missing amino acids when
faced with incomplete protein sequences based on the sur-
rounding context. This can be crucial for structural modeling
and understanding protein function [26], [27]. Analyzing the
relationships between different protein sequences is key to
understanding their evolution and function. LLMs can help
uncover these relationships by learning the subtle changes in

sequences that translate to functional differences.
neg

Sclerostin protein sequences prediction shows the accu-
racy of Reformer, AAPNP, TEXTRGNN, VDCNN, and
RNN_CNN, which show 93%, 64%,51%, 91% AND 64%

(Table 2] Figures|[T}{7).

0s

° Various Models Like ProteinBERT [28], [29] is a deep
language model specifically designed for proteins, combin-
ing language modeling with Gene Ontology (GO) anno-
tation prediction. It offers efficient and flexible biological
sequence performance with local and global representations.
ProteinBERT [30], [31]] achieves near-state-of-the-art perfor-
mance on various protein properties, making it an efficient
framework for rapidly training protein predictors, even with
limited labeled data. Transformer-based architectures have
revolutionized protein design, enabling the creation of per-
sonalized proteins for various applications. ProtGPT2 [11]],
[32], a language model trained on protein space, generates
de novo protein sequences based on natural principles, dis-
playing natural amino acid propensities and distantly related
to natural sequences, thereby exploring unexplored regions
of protein space. Sclerostin protein sequence prediction is
useful for designing novel drugs and increasing alveolar
bone formation [14], [16], [17], [33]-[35]]. Antisclerostin
monoclonal antibodies have shown significant osteoanabolic
effects in animal studies, including increased bone mineral
density in mice and reversing bone loss in ovariectomized
rats. Antisclerostin therapy improved nonhuman primates’
fracture healing,alveolar bone repair, and callus density. Scle-
rostin is a protein that plays a crucial role in alveolar bone
formation. Alveolar bone [[36]] refers to the bone surrounding
the teeth and helps provide support and stability. Sclerostin is
primarily produced and secreted by osteocytes, mature bone
cells within the bone tissue. In summary, sclerostin is vital
in alveolar bone formation by inhibiting excessive alveolar
bone formation and maintaining a balanced bone remodeling
process. This Al model will help predict difficult sequence
information and aid in novel protein drug designs targeting
sclerostin.

5. Conclusion

This predictive AI model will solve complex sclerostin pro-
tein sequences and help design novel drugs to target scle-
rostin for alveolar bone formation.
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