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Abstract Monkeypox (MPX), which is similar to smallpox and cowpox, is caused by the MPX virus. It primarily appears in
isolated areas in Central and West Africa, often near tropical rainforests. In this paper, a mathematical model of the MPX virus is
explored and the sensitivity of the reproduction number is investigated. Two different numerical techniques, forward Euler, and
nonstandard finite difference (NSFD) are constructed for solving the studied model numerically. The convergence, positivity,
boundedness, and consistency of the NSFD scheme are investigated. The simulated graphs are displayed to illustrate the main
attributes of the developed methodologies. The simulation results indicate that the NSFD scheme demonstrates unconditional
convergence, whereas the convergence of the other two techniques is contingent upon the values of the step sizes.
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1. Introduction
Monkeypox, or MPX, arises from infection with the MPX
virus. It is a viral ailment capable of transmission between
individuals and sporadically from contaminated surfaces and
objects handled by an infected person. Additionally, in en-
vironments where the MPX virus circulates among certain
wildlife species, transmission can occur from infected ani-
mals to humans through direct contact. Resembling smallpox
in its clinical presentation, this illness predominantly affects
Central and West Africa, with occasional outbreaks in other
regions. The MPX virus was initially identified in Denmark
in 1958, within monkeys housed for research purposes. The
earliest documented human case of MPX occurred in the
Democratic Republic of the Congo (DRC) in 1970, involving
a nine-month-old boy. The young boy suffered from an
illness resembling smallpox, from which a virus similar to
MPXV was identified [1]–[6]. Between October 1970 and
May 1971, six instances of human MPXV were documented
in Liberia, Nigeria, and Sierra Leone. The initial case of
MPXV in Nigeria was noted in 1971, with 10 additional cases
reported between 1971 and 1978. Subsequently, thousands
of human MPX cases have been verified across 15 nations,
including 11 within Africa. MPX was introduced to countries
such as the United Kingdom, the USA, Israel, and Singapore
[7], [8].

Since its initial identification, MPX has been documented
in humans across various Central and West African na-
tions, including Nigeria, Cameroon, Gabon, Liberia, Central
African Republic, Congo, South Sudan, and Sierra Leone.
Notably, a 2003 outbreak in the United States marked the
first occurrence of MPX infections in humans outside of
Africa. Additionally, several non-African countries, such as
the UK, Israel, and Singapore, have reported imported cases
of MPX from Africa. In May 2022, several European and
North American countries, including Italy, France, Germany,
Sweden, Spain, Portugal, Australia, Canada, and Belgium,
reported confirmed cases of MPX with no direct epidemio-
logical linkage to Africa [3]. As of April 23, 2024, there have
been a cumulative total of 95,340 confirmed cases of MPXV
worldwide, comprising 92,590 cases in non-endemic regions
(countries with no historical cases reported) and 2,750 cases
in endemic regions (countries with a history of reported
cases). The total number of deaths attributed to MPX virus
stands at 184 [9].

MPX can manifest with a spectrum of signs and symp-
toms. While some individuals may experience milder mani-
festations, others may develop severe illness requiring med-
ical attention in a healthcare setting. Those particularly vul-
nerable to experiencing more severe symptoms typicallyin-
clude pregnant individuals, children, and immunocompro-
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mised persons, such as those with untreated and advanced
HIV infection. Typical symptoms of MPX encompass a
rash persisting for 2–4 weeks, often accompanied by fever,
headache, muscle aches, back pain, fatigue, and swollen
lymph nodes. The rash, resembling blisters or sores, can
manifest on various body parts including the face, palms,
soles, groin, genital and anal regions. Additionally, lesions
may occur in the oral cavity, throat, anus, rectum, vagina,
or eyes. The quantity of sores can vary from singular to
numerous. In some cases, individuals may experience inflam-
mation within the rectum (proctitis) leading to intense pain,
and inflammation of the genital region resulting in urinary
difficulties [1].

The primary reservoir for MPX virus infection in humans
remains unidentified, although various studies have indicated
that animals, particularly rodents and non-human primates,
are likely reservoirs for the virus [10]. Currently, there are no
established treatments for MPX infection; however, several
innovative antiviral drugs, such as Brincidofovir, Tecoviri-
mat, and vaccinia immune globulin, are available to manage
disease spread. The past decade has witnessed a notable rise
in MPX cases, linked to the decline in herd immunity against
smallpox. Although smallpox vaccination boasts an 85 per-
cent success rate in preventing MPX, its routine availability
has ceased following global smallpox eradication. Never-
theless, post-exposure vaccination can assist in averting or
reducing the severity of the disease [11], [12].

An infectious disease is a sickness that likely would not
have occurred without the introduction of an infectious mi-
croorganism. However, not all microorganisms associated
with illness cause a recognizable disease. When a parasite
has the potential to cause damage to its host, it is known as
a pathogen. The term ’parasite’ generally refers to organisms
that belong to the virus, bacteria, and fungi or multicellular
organisms which include helminths and arthropods. Most
infections are subclinical, in which the symptoms are so
mild that the infected person does not seek medical atten-
tion. However, the agent can still be transferred to others
during this early stage. Epidemiology is the science of un-
derstanding the patterns of disease occurrence in populations
and what can be done about them. This is most commonly
illustrated by infections (or infestations) and toxic diseases;
non-infectious constitutional diseases such as diabetes or
cancer were traditionally thought to be beyond the scope of
epidemiologists but are now embraced, e.g. through nutrition
studies of coronary heart disease. The role of mathematical
modeling is best realized considering the interest in providing
a mathematical pattern of the incidence of mathematical
models participating in the data collection process. It is of
great value during periods of post-epidemic data collection
by helping to interpret the observed disease dynamics.

Mathematical models are now considered to be an essen-
tial tool for the study of infectious diseases. They provide an
important means of understanding the control of infectious
diseases by assessing the impact of possible interventions.
The aim of infectious disease modelling is to provide an

integrated approach to epidemiological and dynamical un-
derstanding of transmission dynamics for control purposes.
The modelling of epidemics has a long history, but the
use of mathematical models has increased in recent years.
Infectious diseases are now recognized as a frequent threat to
society and the economy. The threat can come from a variety
of sources, including well-known diseases like influenza, and
diseases that are ancient, like tuberculosis, or emerging, like
HIV or the new variant Creutzfeldt-Jakob disease. Many
models have now been developed for well-known infectious
diseases, including many zoonotic infections like Rabies
and West Nile virus, which may lead to dramatic human
epidemics.

Mathematical modelling is a set of techniques that are
useful in managing and evaluating uncertainties and in mini-
mizing the risks associated with the development and use of
a variety of technological systems. Mathematical modelling
requires a theoretical statement of the probable processes
generating completely or partially scored distributions for use
in the management analysis process. A model manifestation
is a version of the model defined precisely enough that it can
be either implemented in a computational system or laid out
as a plan or statement that can be carried out manually. When
the model manifestation is implemented and normalized, it
becomes a model program, which can be executed and the
results understood by a user to whom the results are exposed.
Epidemiologic considerations today contribute information
to programs of infection control, mass childhood vaccination,
and the global picture of the HIV pandemic. Epidemiology
evidence that is only qualitative offers the potential of de-
scribing the processes and the variables implicated in the
problem situation at hand.

In the past, the disease has been largely overlooked, result-
ing in limited knowledge about how it spreads. Nevertheless,
a few studies have attempted to investigate the dynamics
of the MPX virus using mathematical modeling techniques.
Bhunu et al. formulated a mathematical model to depict
the transmission dynamics of MPX [13]. Somma et al. in-
troduced a mathematical model illustrating the transmission
dynamics of the MPX virus, involving two interacting host
populations: humans and rodents. Within the human popu-
lation, parameters such as the quarantine class and public
enlightenment campaign were integrated to control disease
spread [14]. Usman and Adamu constructed a mathematical
model to analyze the dynamics of MPX virus transmission,
integrating control strategies that combine vaccination and
treatment interventions [15].

Philemon developed novel compartmental models, taking
into account factors such as quarantine measures, congenital
infection, and various epidemiological aspects [16]. Samuel
et al. examined the cross-sectional prevalence of people with
healed deformities from pox recovery and those with active
pox infection using four longitudinal studies and generalized
linear models [17]. Peter et al. developed and analyzed a
compartmental mathematical model that included isolation
and quarantine compartments and represented the dynamics
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of MPX [18], [19]. To understand the dynamics of MPX,
Khan et al. presented a mathematical model that included
two forms of transmission: cross-infection between people
and animals and horizontal dispersion among humans [20].
Al-Shomrani et al. investigated the transmission dynamics of
the MPX virus using an SEIR-based deterministic model that
included elements such as the prodromal stage, fluctuating
infectivity, and hospitalization [21]. Peter et al. investigated
a deterministic mathematical model of the MPX virus [22].
Cadmus et al. followed the PRISMA guidelines to perform a
systematic review and meta-analysis of existing data on MPX
in Nigeria [23]. Onitilo et al. [24] developed a deterministic
model to depict the dynamics of MPX transmission in re-
sponse to quarantine restrictions and public education. To ex-
amine potential outbreaks in the United States, a determinis-
tic mathematical model of the MPX virus is developed using
complex, fractional, and classical differential equations [25].
The transmission dynamics of MPX virus epidemics in the
United States are investigated using a mechanistic model that
depicts the interaction of several groups of people, reflecting
various infection phases and hospitalization processes [26].

R.E. Mickens [27] developed the NSFD method, which
has become one of the most effective techniques in recent
years. Researchers have successfully solved a variety of
differential equations using NSFD methodologies [28]–[34],
to name a few. Verma and Kayenat used the NSFD method to
study the generalized Burgers-Huxley (GBH) equation [35].

The purpose of this work is to investigate an effective
implicit numerical integration technique for dealing with
the MPX disease. Two numerical methods, forward Euler
and NSFD, are developed to solve the examined problem.
The convergence, positivity, boundedness, and consistency
of the NSFD scheme are investigated. Numerical simulations
are used in this work to verify the outcomes of analytical
computations. The proposed implicit numerical integration
scheme’s tool is effective, and it incorporates all of the
dynamical qualities required for long-term disease behavior.
The primary goal of this study is to identify an efficient
implicit numerical integration technique for addressing the
MPX disease model. To solve the studied model, two numer-
ical algorithms—forward Euler and NSFD—are developed.
We thoroughly investigate the NSFD scheme’s positivity,
boundedness, and consistency. This work uses numerical
simulations to validate the results of analytical computations.
The results show that the suggested implicit numerical inte-
gration approach is trustworthy, efficient, and includes all of
the dynamic properties required to capture long-term illness
behavior.

2. Monkeypox Virus Model
We consider the model discussed by [22].

dSh

dt
= θh − (β1Ir + β2Ih)Sh

Nh
− µhSh + ϕQh, (1)

dEh

dt
=

(β1Ir + β2Ih)Sh

Nh
− (α1 + α2 + µh)Eh, (2)

Figure 1: Flowchart of the model

Variables Description
Sh Population of susceptible
Ih Population of infected humans
Qh Population of isolated humans
Rh Population of recovered humans
Sr Population of susceptible rodents
Er Population of exposed rodents
Ir Population of infected rodents

Table 1: Details of the model variables

dIh
dt

= α1Eh − (µh + δh + γ)Ih, (3)

dQh

dt
= α2Eh − (ϕ+ τ + µh + δh)Qh, (4)

dRh

dt
= γIh + τQh − µhRh, (5)

dSr

dt
= θr −

β3SrIr
Nr

− µrSr, (6)

dEr

dt
=

β3SrIr
Nr

− (µr + α3)Er, (7)

dIr
dt

= α3 Er − (µr + δr) Ir. (8)

The parameters and variables used above are described in Ta-
ble 1 and Table 2 respectively. Figure 1 shows the flowchart
of the above model.

System (1-8) has a disease-free equilibrium (DFE) P0 =
( θhµh

, 0, 0, 0 , 0, θr
µr

, 0, 0) and an endemic equilibrium (EE)

Parameters Description
θh) Rate of human recruitment
θr) Rate of rodent recruitment
β1) Rate of rodent-to-human contact
β2) Rate of human-to-human contact
β3) Rate of rodent-to-rodent contact
α1) The proportion of exposed humans becoming infected
α2) Proportion identified as suspected cases
φ) Proportion remaining undetected after diagnosis
τ ) Rate of progression from isolation to recovery
γ) Rate of human recovery
µh) Rate of natural human mortality
µr) Rate of natural rodent mortality
δr) Rate of rodent mortality due to disease
δh) Rate of human mortality due to disease

Table 2: Details of the model parameter
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P1 = (Sh
∗, Eh

∗, Ih
∗, Qh

∗, Rh
∗, Sr

∗, Er
∗, Ir

∗). The basic
reproduction number for the studied model is

R0 =
β2α1

(α1 + α2 + µh)(µh + δh + γ)
.

A. Sensitivity of R0

The sensitivity analysis evaluates how changes in an inde-
pendent variable affect a specific dependent variable within
a given set of assumptions [36]. A negative sensitivity index
denotes an inverse relationship between the parameter and
R0, while a positive sensitivity index indicates that increasing
the parameter value leads to an increase in R0. We used
the following expression to determine the sensitivity of a
parameter ζ
ξ(ζ) = ζ ∂

R o∂ζ
(R0).

ξ (β2) =
β2

R0
.dR0

dβ2
= β2

β2α1

(α1+α2+µh)(µh+δh+γ)
.
.
d

(
β2α1

(α1+α2+µh)(µh+δh+γ)

)
dβ2

= 1.

ξ (α1) =
α1

R0
.dR0

dα1
= α1

β2α1

(α1+α2+µh)(µh+δh+γ)
.
.
d

(
β2α1

(α1+α2+µh)(µh+δh+γ)

)
dα1

= 1.

ξ (α2) =
α2

R0
.dR0

dα2
= α2

β2α1

(α1+α2+µh)(µh+δh+γ)
.
.
d

(
β2α1

(α1+α2+µh)(µh+δh+γ)

)
dα2

= −(β2α1)(µh+δh+γ)

((α1+α2+µh)(µh+δh+γ))2
.

ξ(γ) = γ
R0

.dR0

dγ = γ
β2α1

(α1+α2+µh)(µh+δh+γ)
.
.
d

(
β2α1

(α1+α2+µh)(µh+δh+γ)

)
dγ = −(β2α1)(α1+α2+µh)

((α1+α2+µh)(µh+δh+γ))2
.

ξ (µh) =
µh

R0
.dR0

dµh
= µh

β2α1

(α1+α2+µh)(µh+δh+γ)
.
.
d

(
β2α1

(α1+α2+µh)(µh+δh+γ)

)
dµh

= −(β2α1)(α1+α2+δh+γ+2µh)

((α1+α2+µh)(µh+δh+γ))2
.

The calculated findings indicate that β2 and α1 are sen-
sitive parameters. Increasing sensitive parameters increases
R0, and vice versa.

3. Numerical Modelling
In this section, we will develop two different numerical
schemes for the solution of the studied model.

A. Forward Euler Method
Considering the system (1-8), we develop a forward Euler
scheme. Constructing a numerical scheme for the forward
Euler involves making the following supposition.

Sh(t) ≈ Sh
n , Eh(t) ≈ Eh

n, Ih(t) ≈ Ih
n, Qh(t) ≈

Qh
n, Rh(t) ≈ Rh

n, Sr(t) ≈ Sr
n, Er(t) ≈ Er

n and Ir(t) ≈
Ir

n.

Sh
n+1 = Sh

n + h
(
θh − (β1Ir

n+β2Ih
n)Sh

n

Nh
− µhSh

n + φQh
n
)
,

(9)
Eh

n+1 = Eh
n + h

(
(β1Ir

n+β2Ih
n)Sh

n

Nh
− (α1 + α2 + µh)Eh

n
)
,

(10)

Ih
n+1 = Ih

n + h (α1Eh
n − (µh + δh + γ) Ih

n ) , (11)

Qh
n+1 = Qh

n + h (α2Eh
n − (φ+ τ + µh + δh)Qh

n) ,
(12)

Rh
n+1 = Rh

n + h (γIh
n + τQh

n − µh Rh
n) , (13)

Sr
n+1 = Sr

n + h(θr −
β3Sr

nIr
n

Nr
− µrSr

n), (14)

Er
n+1 = Er

n + h

(
β3Sr

nIr
n

Nr
− (µr + α3)Er

h

)
, (15)

Ir
n+1 = Ir

n + h (α3 Er
n − (µr + δr) Ir

n) . (16)

B. NSFD Scheme

Sh
n+1 =

Sh
nNh + hNh(φQh

n + θh)

Nh + hµhNh + h(β1Ir
n + β2Ih

n)
, (17)

Eh
n+1 =

NhEh
n + h(β1Ir

n + β2Ih
n)Sh

n

Nh(1 + h (α1 + α2 + µh))
, (18)

Ih
n+1 =

Ih
n + hα1Eh

n

1 + h(µh + δh + γ)
, (19)

Qh
n+1 =

Qh
n + hα2Eh

n

1 + h(φ+ τ + µh + δh)
, (20)

Rn+1
h =

Rn
h + h(γInh + τQn

h)

1 + hµh
(21)

Sr
n+1 =

NrSr
n + hNrθr

Nr(1 + h (β3Ir
n +Nrµr))

, (22)

Er
n+1 =

NrEr
n + h(β3Sr

nIr
n)

Nr(1 + h (µr + α3))
, (23)

Ir
n+1 =

Ir
n + hα3 Er

n

1 + h (µr + δr)
. (24)

C. Positivity of NSFD Scheme
Theorem 1. Let the state variables Sh(t), Eh(t), Ih(t), Qh(t),
Rh(t), Sr(t), Er(t), and Ir(t) be positive at t = 0. Also,
let θh, θr, β1, β2, β3, α1, α2, α3, φ, τ, γ, µh, µr, δr, and δh be
positive in the model. Then,

Sn+1
h ≥ 0, En+1

h ≥ 0, In+1
h ≥ 0, Qn+1

h ≥ 0, Rn+1
h ≥ 0, Sn+1

r ≥ 0, En+1
r ≥ 0, In+1

r ≥ 0.

Proof: By substituting n = 0 into the system (17-24), we
derive the following expression.

Sh
1 =

Sh
0Nh + hNh(φQh

0 + θh)

Nh + hµhNh + h(β1Ir
0 + β2Ih

0)
≥ 0,

Eh
1 =

NhEh
0 + h(β1Ir

0 + β2Ih
0)Sh

0

Nh (1 + h (α1 + α2 + µh))
≥ 0,

Ih
1 =

Ih
0 + hα1Eh

0

1 + h(µh + δh + γ)
≥ 0,

Qh
1 =

Qh
0 + hα2Eh

0

1 + h(φ+ τ + µh + δh)
≥ 0,

Rh
1 =

Rh
0 + h(γIh

0 + τQh
0)

1 + hµh
≥ 0,
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Sr
1 =

NrSr
0 + hNrθr

Nr(1 + h
(
β3Ir

0 +Nrµr

)
)
≥ 0,

Er
1 =

NrEr
0 + h(β3Sr

0Ir
0)

Nr(1 + h (µr + α3))
≥ 0,

Ir
1 =

Ir
0 + hα3 Er

0

1 + h (µr + δr)
≥ 0.

Now, by substituting n = 1 into the system (17-24) to
reach the following step,

Sh
2 =

Sh
1Nh + hNh(φQh

1 + θh)

Nh + hµhNh + h(β1Ir
1 + β2Ih

1)
≥ 0,

Eh
2 =

NhEh
1 + h(β1Ir

1 + β2Ih
1)Sh

1

Nh (1 + h (α1 + α2 + µh))
≥ 0,

Ih
2 =

Ih
1 + hα1Eh

1

1 + h(µh + δh + γ)
≥ 0,

Qh
2 =

Qh
1 + hα2Eh

1

1 + h(φ+ τ + µh + δh)
≥ 0,

Rh
2 =

Rh
1 + h(γIh

1 + τQh
1)

1 + hµh
≥ 0,

Sr
2 =

NrSr
1 + hNrθr

Nr(1 + h
(
β3Ir

1 +Nrµr

)
)
≥ 0,

Er
2 =

NrEr
1 + h(β3Sr

1Ir
1)

Nr(1 + h (µr + α3))
≥ 0,

Ir
2 =

Ir
1 + hα3 Er

1

1 + h (µr + δr)
≥ 0.

Next, let’s assume that the aforementioned system of
equations guarantees that the variables maintain positivity
attributes for for n = 2, 3, 4, . . . , n − 1, i.e., Sh

n+1 ≥
0, Eh

n+1 ≥ 0, Ih
n+1 ≥ 0, Qh

n+1 ≥ 0, Rh
n+1 ≥

0, Sr
n+1 ≥ 0, Er

n+1 ≥ 0, Ir
n+1 ≥ 0 ; for n =

2, 3, 4, . . . , n− 1.
Now, let’s examine the positivity for a randomly chosen

positive integer n ∈ Z, we observe that

Sh
n+1 =

Sh
nNh + hNh(φQh

n + θh)

Nh + hµhNh + h(β1Ir
n + β2Ih

n)
≥ 0,

Eh
n+1 =

NhEh
n + h(β1Ir

n + β2Ih
n)Sh

n

Nh(1 + h (α1 + α2 + µh))
≥ 0,

Ih
n+1 =

Ih
n + hα1Eh

n

1 + h(µh + δh + γ)
≥ 0,

Qh
n+1 =

Qh
n + hα2Eh

n

1 + h(φ+ τ + µh + δh)
≥ 0,

Rh
n+1 =

Rh
n + h(γIh

n + τQh
n)

1 + hµh
≥ 0,

Sr
n+1 =

NrSr
n + hNrθr

Nr(1 + h (β3Ir
n +Nrµr))

≥ 0,

Er
n+1 =

NrEr
n + h(β3Sr

nIr
n)

Nr(1 + h (µr + α3))
≥ 0,

Ir
n+1 =

Ir
n + hα3 Er

n

1 + h (µr + δr)
≥ 0.

Consequently, the proposed scheme ensures the positivity
of the state variables for all positive integer values of n.

D. Consistency Analysis
In this section, we conduct a consistency analysis of the sys-
tem (17-24) scheme using Taylor’s series expansion (TSE).
The TSE of Sh

n+1 is calculated as follows:

Sh
n+1 = Sh

n + h
dSh

dt
+

h2

2!

d2Sh

dt2
+

h3

3!

d3Sh

dt3
+ . . . ,

From the first equation of the NSFD scheme, we have

Sh
n+1 (Nh + hµhNh + h(β1Ir

n + β2Ih
n)) = Sh

nNh + hNh(φQh
n + θh).

Substituting the value of Sh
n+1 in the above equation, we

obtain
(
Sn
h + hdSh

dt + h2

2!
d2Sh

dt2 + h3

3!
d3Sh

dt3 + . . .
)
(Nh + hµhNh + h (β1I

n
r + β2I

n
h )) = Sn

hNh + hNh (φQ
n
h + θh)

After some simplification and applying h −→ 0, we obtain

dSh

dt
= θh −

(β1Ir + β2Ih)Sh

Nh
− µhSh + φQh.

This finding indicates that our discretized equation is in line
with the equation of system (1-8). Similarly, by examining
the second equation of the system (17-24), we arrive at

Eh
n+1(Nh (1 + h (α1 + α2 + µh)) = NhEh

n + h(β1Ir
n + β2Ih

n)Sh
n.

⇒ dEh

dt =
(β1Ir+β2Ih)Sh

Nh
− (α1 + α2 + µh)Eh.

Similarly, substituting the value of Ihn+1 in the third equa-
tion of the system (17-24), we obtain as follows(
Inh + hdIh

dt + h2

2!
d2Ih
dt2 + h3

3!
d3Ih
dt3 + . . .

)
(1 + h (µh + δh + γ)) = Inh + hα1E

n
h ,

⇒ dIh
dt

= α1Eh − (µh + δh + γ) Ih.

On a similar pattern, applying Taylor’s series expansion of
Qh

n+1, Rh
n+1, Sr

n+1, Er
n+1, and Ir

n+1 in the fourth,
fifth, sixth, seventh and last equation of the system (3), and
simplifying we obtain as follows

dQh

dt
= α2Eh − (φ+ τ + µh + δh) Qh,

dRh

dt
= (γIh + τQh)−Rhµh,

dSr

dt
= θr − Sr (β3Ir +Nrµr) ,
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(a) Susceptible humans at h = 1 (b) Susceptible humans at h = 1.9

(c) Infected humans at h = 1 (d) Infected humans at h = 2

(e) exposed humans at h = 1 (f) exposed humans at h = 2

Figure 2: Susceptible, Infected and exposed humans using
the Euler scheme at DFE

dEr

dt
= (β3SrIr)− Er (µr + α3) ,

dIr
dt

= α3 Er − Ir (µr + δr) .

Thus, our discretized implicit numerical integration scheme
aligns with the equations of the system (1-8).

4. Results and Discussions
In this section, numerical simulation will be employed to
illustrate the performance of both the forward Euler method
and the suggested NSFD scheme.

Figures 2 and 3 illustrate the graphical trends of the
human sub-populations using the Euler method, observed at
the DFE and EE points for various step size values. The
Euler approach demonstrates convergence at smaller step
sizes but starts exhibiting non-physical oscillations and gen-
erating negative values as the step size increases. Negative
values in these contexts hold no meaningful interpretation,
as populations cannot be negative. This behavior depicted
by the graphs indicates that the Euler method is inadequate
for accurately representing the dynamics of MPX disease.
Figures 4 and 5 showcase the graphical trajectories of the
human sub-populations utilizing the NSFD method, observed

(a) Susceptible humans at h = 1 (b) Susceptible humans at h = 2

(c) Infected humans at h = 1 (d) Infected humans at h = 2

(e) exposed humans at h = 1 (f) exposed humans at h = 2

Figure 3: Susceptible, Infected and exposed humans using
the Euler scheme at EE

at the DFE and EE points across various step size values.
Notably, the NSFD scheme consistently maintains positivity
and convergence regardless of changes in step size. This in-
dicates that the NSFD scheme serves as a robust and reliable
approach for depicting the dynamics of MPX virus disease.
Figure 6 illustrates the effects of α1 and α2. It is evident
that α1 demonstrates a direct proportionality to infection; an
increase in α1 corresponds to increased infection, and vice
versa. Conversely, α2 exhibits an inverse proportionality to
infection; an increase in α2 leads to decreased infection, and
vice versa. From this observation, it can be concluded that
preventing exposed humans from contracting the infection is
the most effective approach for reducing MPX virus disease.

5. Conclusion
After the eradication of smallpox, monkeypox has become
the most well-known Orthopoxvirus zoonosis. The disease is
caused by the monkeypox virus, a phylogenetically related
zoonotic agent originating from rodents, found in various
Central and West African countries. Monkeypox results in
a severe, highly infectious, and incapacitating illness, posing
a significant public health challenge. To effectively control
future outbreaks, it is crucial to implement at least three
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(a) Susceptible humans at h = 1 (b) Susceptible humans at h = 10

(c) Infected humans at h = 1 (d) Infected humans at h = 10

(e) exposed humans at h = 1 (f) exposed humans at h = 10

Figure 4: Susceptible, Infected and exposed humans using
the NSFD scheme at DFE

prevention strategies: preventive vaccination in humans, en-
vironmental management, and disease surveillance.

Mathematical modeling has become an indispensable
guide for planning, executing, and tracking diseases during
epidemics and pandemics scientifically. The role of various
surveillance and tracking organizations through mathemat-
ical modeling has become pertinent in recent years. Math-
ematical modeling is easily recognized in protocol design
and has advantages in logistical problem-solving. It is also
considered valuable in the design of epidemiological tools,
especially in data collection methods and interpretation of the
data, not only collected but also for the initial stage analysis.

In this study, we considered and analyzed an epidemio-
logical model depicting the transmission dynamics of MPX
disease to understand the transmission dynamics of MPX
disease. The proposed model comprises eight mutually ex-
clusive compartments. The human population has been di-
vided into four compartments: exposed individuals, isolated
humans, infected humans, and recovered humans. Just as hu-
mans are categorized into three groups, rats are also classified
into exposed, susceptible, and infected rodents. The sensi-
tivity analysis of the reproduction number revealed that β2,
representing the human-to-human contact rate, is the most

(a) Susceptible humans at h = 1 (b) Susceptible humans at h = 10

(c) Infected humans at h = 1 (d) Infected humans at h = 10

(e) exposed humans at h = 1 (f) exposed humans at h = 10

Figure 5: Susceptible, Infected and exposed humans using
the NSFD scheme at EE

(a) (b)

Figure 6: Effect of α1 and α2 on infected humans

sensitive parameter in the transmission of the disease. Addi-
tionally, α1 the ratio of exposed humans becoming infected,
was found to significantly influence the propagation of MPX
disease within host populations. The results emphasize the
importance of decreasing human-to-human contact rates to
effectively control the spread of MPX disease within the
population. This underscores the need for healthcare profes-
sionals and policymakers to prioritize interventions aimed at
addressing this aspect.

Considering the challenges related to controlling rodent
populations, the most effective strategy for preventing, mit-
igating, and controlling MPX disease involves minimizing
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contact with infected individuals.
This can be accomplished by promoting vaccination

against MPX infection in highly endemic regions as an addi-
tional preventive measure, as well as by educating the public
about the disease, encouraging good personal hygiene habits,
sterilizing medical equipment, and using personal protective
equipment when caring for infected individuals.

Two different strategies are used to solve the problem
numerically, and the resulting graphical representations of
each method are compared. The simulation shows that even
at very small step sizes, the Euler technique is unable to
produce findings that can be trusted. In contrast, the sug-
gested approach delivers precise and convergent outcomes
across all chosen step size values. Furthermore, the NSFD
scheme’s positivity, boundedness, and consistency are scru-
tinized. This scheme upholds positivity, a pivotal attribute
given that model compartments represent populations that
cannot exhibit negative values. Consequently, negative values
hold no relevance in such models. On occasion, the Euler
method generates negative values with specific step size
selections, making it inadequate for investigating disease
dynamics within the considered model. The investigation into
the effects of α1 and α2 on infected humans reveals that
the most effective means of reducing MPX virus disease
involves preventing exposed individuals from contracting the
infection. The main focus of this study lies in constructing
an NSFD scheme for solving the dynamics of the MPX
virus disease model. The work can be extended to fractional,
fuzzy, delayed, and stochastic domains, as well as exploring
additional directions.
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