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Abstract Background: Early detection of oral potentially malignant disorders (OPMDs) is crucial for improving outcomes 
in oral cancer, particularly in resource-limited settings. Recent advances in large language models (LLMs) and smartphone 
imaging provide new opportunities for AI-driven diagnostic support; however, their use in detecting oral mucosal lesions 
remains underexplored. Objective: To evaluate and compare the diagnostic performance of Few-shot prompting, Retrieval-
Augmented Generation (RAG), and RAG with Chain-of-Thought (RAG + COT) models inthe binary classification of 
smartphone-captured intraoral buccal mucosa images as either normal or abnormal. Methods: Using a standardized smartphone 
protocol, 250 intraoral images from 125 patients were categorized as normal, variations, or lesions and split equally into training 
and testing sets. Few-shot prompting used a subset only 10 test images — 5 normal and 5 lesion — which may produce unstable 
estimates, while RAG and RAG + COT models trained on the full training set. Expert annotations guided COT descriptors. 
Variation images were used only in model training for RAG and RAG+COT to improve contextual representation but excluded 
from binary performance evaluation. Performance was evaluated via sensitivity, specificity, accuracy, F1 score, precision, 
recall, and 95% confidence intervals. Results: Few-shot prompting achieved 80% sensitivity, 100% specificity, 90% accuracy, 
and an F1 score of 0.88 with wide CIs due to the very small test set. The RAG model, with 54% sensitivity and 91% specificity, 
showed limited true positive detection. Adding chain-of-thought (RAG + COT) improved sensitivity to 90% and accuracy to 
82% (F1: 0.86), though specificity dropped to 64% leading to a higher false-positive rate with potential implications for 
screening follow-up, however, highlighting the value of structured logical reasoning in enhancing lesion detection. Conclusion: 
The RAG + COT model outperformed Few-shot and RAG models in mucosal lesion detection, demonstrating high sensitivity 
and improved diagnostic accuracy. However, its low specificity highlights the need for human review before acting on AI 
results. Findings are promising but preliminary, requiring validation in larger and more balanced datasets before clinical 
adoption. Its structured logical reasoning highlights the potential of LLMs with COT prompting to strengthen community-
based oral cancer screening. 
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INTRODUCTION 
Oral cancer is one of the most prevalent cancers 
worldwide, and its burden is disproportionately higher in 
low- and middle-income countries, including India [1]. 
Oral potentially malignant disorders (OPMD) often serve 
as precursors to oral cancer, underscoring the critical 
importance of early detection for effective prevention [2]. 
However, timely diagnosis and treatment remain 
inaccessible in many settings particularly rural and 

underserved regions leading to significantly poorer 
outcomes. The overall five-year survival rate for oral 
cancer hovers around 50%, but varies widely by 
geographic and demographic factors; while it may reach 
up to 65% in developed countries, it can fall as low as 15% 
in some rural areas, depending on the tumour site [3]. 
Traditional screening approaches typically require trained 
personnel and specialized infrastructure, which are often 
lacking in resource-limited environments.
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The widespread adoption of smartphones has opened 
promising pathways for point-of-care diagnostics. With the 
ability to capture high-resolution images suitable for clinical 
evaluation, smartphone cameras offer a practical and scalable 
solution for community-based screening programs [4]. 
Concurrently, advances in Artificial Intelligence 
(AI)particularly through advancements in Deep Learning 
(DL) and Natural Language Processing (NLP), has led to the 
emergence of large language models (LLMs), such as 
Generative Pre-trained Transformers (GPT) have 
demonstrated superior diagnostic performance over 
conventional feature-based methods in medical image analysis 
[5].These models possess the ability to efficiently process 
large volumes of data, integrating both current research and 
historical records, thereby establishing a novel paradigm for 
understanding and evaluating oncological conditions, 
including head and neck cancers [6]. Their capacity to 
organize and interpret complex information positions them as 
promising tools for clinical decision support, with the potential 
to augment diagnostic accuracy and streamline workflows in 
healthcare settings [7]. Oral cancer diagnosis using AI has 
historically relied on convolutional neural networks (CNNs) 
and transformer-based vision models. While effective, these 
approaches require extensive labelled datasets and often lack 
interpretability. LLM-based multimodal systems, such as 
GPT-4O, integrate visual and textual reasoning and may better 
handle variable-quality real-world data. Real-world 
smartphone-based imaging faces technical challenges 
including poor lighting, motion blur, variable framing, and 
heterogeneous device capabilities, which can degrade AI 
performance. One of the latest versions, ChatGPT 4.0, 
introduces voice and image recognition capabilities, 
broadening its applicability within healthcare [8]. Given that 
oral cavity and oropharyngeal lesions typically arise from the 
mucosal epithelium and are often easily imaged non-
invasively, ChatGPT’s image analysis capabilities may extend 
to detecting squamous cell carcinoma and Oral Potentially 
Malignant Disorders [9]. Such functionality could pave the 
way for AI-enabled screening tools in oral oncology and 
contribute to early self-assessment in oral health. Despite 
growing interest in LLMs within fields such as 
Periodontology, Endodontics, and Orthodontics, only few 
studies have specifically explored LLM-based approaches for 
oral mucosal lesion detection using community-acquired 
smartphone images [10]. This study explores the diagnostic 
potential of LLMs, specifically Retrieval-Augmented 
Generation (RAG) and RAG integrated with Chain-of-
Thought (COT) reasoning in identifying OPMD and Oral 
Cancer from smartphone-captured intraoral images of the 
buccal mucosa. Buccal mucosa was chosen as the focus 
because it is easily accessible, well-illuminated, and a frequent 
site for OPMD in South Asian populations. We also employed 
few-shot prompting techniques to optimize performance on 
smaller datasets. This investigation aims to evaluate the 
strengths and limitations of large language models (LLMs) in 
the diagnostic assessment of OPMD and oral cancer, offering 
AI-driven solutions in oral healthcare. 

METHODS 
Capturing Intraoral Images 
This Diagnostic accuracy study was conducted after 
obtaining approval from the Institutional Review Board 
(IRB Number: RIEC/20231021/PHD). Written informed 
consent was obtained from patients after explaining the 
purpose of the study and assuring them that their data would 
be protected at all times, ensuring their identity would not be 
revealed. Intraoral photographs were taken from 125 patients 
attending various spokes from rural area aged 18 years or 
older using a Samsung Galaxy M15 5G smartphone based 
on convenience sampling. The buccal mucosal images were 
captured following a standardized protocol in which the 
Region of Interest (ROI) was focused on the centre grid of 
the camera, covering more than 60% of the area [11]. 
Captured images were checked for quality, and if they did 
not meet the required standard, the images were recaptured. 
The final images were renamed anonymously using an 
alphanumeric ID and uploaded to the computer via either a 
direct line connection or a web-based server. 
 
Intraoral Image Dataset 
The dataset comprises 250 buccal mucosal images, which are 
categorized into three groups: normal images, variations from 
normal, and lesional images. The dataset was split into a 
training and a testing dataset, where the training dataset 
comprises 50 normal mucosal images, 50 variations from 
normal, and 25 lesional images, totalling 125 images. 
Similarly, the testing dataset contains the same number of 
images that fall into the same categories. The dataset 
information is split as shown in Figure 1. The healthy mucosa 
presents as homogeneous, pink, and shiny, with neither white 
nor red patches. Variations from normal present as a category 
that cannot be classified as either lesional or healthy, but 
exhibit some changes in the tissues. Variation images (n=100 
across train/test) were included in RAG and RAG+COT 
training to enhance contextual knowledge but excluded from 
binary lesion/normal evaluation. The lesional images present 
as red or white changes, exhibiting changes similar to those of 
OPMD and Oral cancer. 

The images were annotated using the VGG image 
annotation tool by three specialists from the Oral Pathology 
and Public Health Dentistry department, who had received 
prior training. Disagreements were resolved by consensus 
with a senior oral pathology expert. Inter-rater reliability was  

 
Figure 1: Dataset Distribution 
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high (Cohen’s kappa = 0.87). Each image receives 
annotations concerning the appearance of symptoms and 
clinical records or histopathologic reports. Finally, another 
expert specialized in mucosal diseases with 10 years of 
clinical experience reviews each case label to confirm the 
initial assessment. Cases labelled as containing multiple oral 
disease conditions or as controversial by the experts are 
excluded from the dataset. The descriptors for the labels of 
each image were listed separately in an MS Excel sheet 
under a unique image ID, which is used for Chain of 
Thoughts in the RAG + COT model. The descriptors, such 

as location, colour, margin, surface texture, description of 
the lesion, and size were used as a Chain of Thoughts. 
 
Network Framework and Training 
This research employed Few-shot prompting for initial 
assessment, followed by RAG and RAG + COT. Few-shot 
prompting is the process of giving a language model a 
handful of demonstrations or examples within the prompt 
itself [12]. The goal was to perform a binary classification 
by categorizing images into two classes: either lesion or 
normal. 

 
Figure 2: Workflow of various models in classifying intraoral images 
 

 
Figure 3: Confusion matrix of the network models 
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Table 1: Formula used for assessing the diagnostic performance of the models 

Performance Metrics Formula 

Sensitivity  TP / (TP + FN) 

Specificity  TN / (FP + TN) 

Accuracy  (TP + TN) / (TP + TN + FP + FN) 

F1 Score 2TP / (2TP + FP + FN) 

 
Retrieval Augmented Generation (RAG) is an AI 

framework that improves the quality of responses from 
Large Language Models (LLMs) by augmenting LLMs with 
a specialized and mutable knowledge base. RAG works by 
combining external data with pre-trained LLMs to generate 
more accurate. The advantages include access to updated 
knowledge, retrieving real-time, current information from 
external sources, specific query handling, and retrieving 
relevant documents for accurate, specialized responses. The 
limitations are that it struggles with rare or niche queries and 
is limited to static, pre-trained data. RAG technique has been 
leveraged to retrieve relevant oral images from each class, 
followed by a few-shot prompting to enhance prediction 
accuracy. It retrieves the most relevant and up-to-date oral 
images from a large dataset, ensuring the model references 
current data for comparison and analysis, thereby providing 
access to updated and relevant information [13]. 

Additionally, it retrieves specific oral images related 
to enhancing the model's ability to provide accurate 
classifications, even for rare or unusual oral conditions, 
improving the handling of specific cases. The system 
comprises two primary components: the Retriever, which 
identifies and retrieves relevant images from a database 
based on the input query image for each class, and the 
Generator, which assigns labels to the retrieved images. 
This retrieval mechanism ensures the model has access to 
visually and contextually similar examples, enhancing 
interpretability and contextual grounding. Subsequently, 
the Generator processes both the retrieved and query 
images as part of a structured prompt to produce a textual 
classification output. In this study, GPT-4O serves as the 
Generator, leveraging its multimodal capabilities to 
perform the final diagnostic classification. Chain-of-
Thought Prompting is a prompt engineering method that 
enhances the reasoning capabilities of large language 
models (LLMs) by encouraging them to break down their 
reasoning into a series of intermediate steps. In addition 
to providing an answer, Chain of Thought prompting 
requires the model to explain how it arrived at that final 
answer, offering more transparency and improving 
accuracy [14]. The COT template applied to normal 
mucosa includes, upon inspection of the {location}, an 
observation of a {colour} appearance with {margin} 
edges and a {texture} surface texture, which supports the 
conclusion that this is normal. For Variation in normal, 
upon inspecting the {location}, we observe a {colour} 
appearance with {margin} edges and a {texture} surface 
texture. The {description of the lesion} and {size} further 
support the conclusion that this is a {var}. {var} can be 
lesion or normal based on the requirement. In case of 

lesion mucosal images, upon inspecting the {location}, 
the model observes {colour} appearance with {margin, 
edges and a {texture} surface texture. The {description of 
the lesion} and {size} further supports the conclusion that 
it is a lesion. The workflow of the models is given in 
Figure 2. 

Testing of the models was done using a testing dataset 
to obtain the performance metrics of the models. Of the 125 
images in the training dataset, five exemplar images per class 
(normal and lesion) were selected to fit GPT-4O API token 
constraints and to maximize diversity of lesion presentations 
in training the Few-shot prompting model, followed by 
evaluation using the same number of images from the testing 
dataset. Following this, 125 images from the training dataset 
(50 normal, 50 variations from normal, and 25 lesion 
images) were used to train the RAG and RAG+COT models. 
The models were then evaluated using the same number of 
images from the testing dataset. 
 
Diagnostic Performance Metrics 
The performance of each model was evaluated using 
standard diagnostic metrics. True positives, true 
negatives, false positives, and false negatives were 
recorded in a confusion matrix (Figure 3). Sensitivity is 
defined as the ability of a model to correctly identify those 
with the disease (true positives), meaning it measures how 
well a model avoids false negatives. Specificity, on the 
other hand, refers to a model's ability to correctly identify 
those without the disease (true negatives), indicating how 
well it avoids false positives. Accuracy represents the 
number of correctly classified data instances over the total 
number of data instances. F1 score is the harmonic mean 
of precision and recall, providing a balanced measure that 
accounts for both false positives and false negatives [15]. 
Sensitivity was the primary evaluation metric due to the 
screening context. Specificity, accuracy, F1 score, 
precision, and recall were secondary metrics. 95% 
confidence intervals were calculated for all metrics. 
McNemar’s test was used for paired binary comparisons 
between models. All these metrics, calculated using the 
formulas given in Table 1. This study followed STARD 
2015 guidelines for diagnostic accuracy reporting, and a 
completed checklist is provided in the supplementary 
material.  
 
RESULTS 
The study included 125 participants (82 males [65.6%], 43 
females [34.4%]) with a mean age of 48.5 ± 12.3 years. This 
study evaluated the diagnostic performance of three LLM-
based models. The few-shot prompting approach 
demonstrated a sensitivity of 80% and a specificity of 100%, 
indicating a strong ability to correctly identify true positive 
cases while completely eliminating false positives. The 
model achieved an overall accuracy of 90%, with an F1 score 
of 0.88, signifying a well-balanced and reliable diagnostic 
performance (Table 2). Results for the few-shot model 
should be interpreted with extreme caution given the very 
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small (n=10) test set; confidence intervals are wide. The 
standalone RAG model achieved a sensitivity of 54%, 
correctly identifying just over half of true positive cases of 
OPMD and oral cancer. This limited sensitivity highlights a 
high false negative rate, a critical concern in oncologic 
diagnostics, where delayed or missed detection can severely 
impact patient outcomes. Conversely, the model 
demonstrated high specificity at 91%, indicating strong 
performance in correctly classifying negative cases. This 
conservative behavior suggests a bias toward avoiding over-
diagnosis, but at the expense of missing many true positives. 
The overall accuracy stood at 68%, meaning approximately 
two-thirds of the predictions were correct. The F1 score of 
0.68 further reflects the model’s inability to strike an 
effective balance between sensitivity and precision, 
underscoring its limitations in a diagnostic setting that 
prioritizes early and comprehensive detection. This indicates 
limited true positive detection despite high specificity. 

Upon integrating Chain-of-Thought (COT) reasoning, 
the RAG + COT model demonstrated a marked 
improvement in diagnostic performance. Sensitivity 
increased substantially to 90%, indicating a significantly 
enhanced capacity to detect true positive cases. This 
improvement likely stems from the COT framework’s ability 
to guide the model through step-by-step reasoning, enabling 
more accurate interpretation of lesion-related visual cues. 
However, this gain in sensitivity was accompanied by a 
decline in specificity to 64%, leading to a higher false-
positive rate with potential implications for screening 
follow-up. It may lead to additional, potentially unnecessary 
clinical follow-ups. The overall accuracy improved to 82%, 
and the F1 score increased to 0.86, indicating a strong 
balance between precision and recall, with an appropriate 
leaning toward sensitivity. These metrics confirm the 
model’s enhanced reliability and clinical relevance when 
structured logicalreasoning is incorporated. Precision and 
recall values were added to the performance table. 
RAG+COT’s precision was 0.78 and recall 0.90; RAG’s 
precision was 0.65 and recall 0.54; Few-shot’s precision was 
1.00 and recall 0.80. 

Overall, the RAG+COT model appears well-suited for 
high-sensitivity screening tasks in community or tele-
dentistry settings, where early detection of OPMD or oral 
cancer is paramount. While the higher false positive rate may 
raise the burden of follow-up diagnostics, it remains 
acceptable in preventive oncology, particularly when 
supported by expert clinical validation. 
 
Table 2: Performance metrics of the network models 

Models 
Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Accuracy 
(95% CI) 

F1 
Score Precision Recall

Few-Shot 
prompting 

0.80 
(0.38-0.96) 

1.00 
(0.57-1.00) 

0.90 
(0.60-0.98) 

0.88 1.00 0.80 

RAG 0.54 
(0.36-0.74) 

0.91 
(0.81-0.97) 

0.68 
(0.43-0.76) 

0.68 0.78 0.56 

RAG + 
COT 

0.90 
(0.75-0.98) 

0.64 
(0.49-0.77) 

0.82 
(0.62-0.92) 

0.86 0.56 0.92 

DISCUSSION 
This study evaluated the diagnostic capabilities of Large 
Language Models (LLMs) in identifying Oral Potentially 
Malignant Disorders (OPMD) and Oral Cancer using 
intraoral images captured via smartphones. A comparative 
analysis between the standard Retrieval-Augmented 
Generation (RAG) model and its enhanced variant 
incorporating Chain-of-Thought (COT) reasoning revealed 
prominent differences in diagnostic efficacy. The RAG + 
COT model achieved a sensitivity of 90%, markedly 
exceeding the 54% sensitivity of the standard RAG model. 
This substantial improvement highlights the model’s 
enhanced capability to accurately identify true positive cases 
of OPMD and oral cancer an essential advantage in 
screening settings where early detection is critical for timely 
intervention and reducing the risk of disease progression. 
The high false-positive rate (36% for RAG+COT) has 
important implications — in screening settings, this could 
lead to unnecessary referrals, patient anxiety, and additional 
costs. However, in preventive oncology, prioritizing 
sensitivity over specificity is often acceptable if expert 
review is available. 

High sensitivity is especially vital in oncology, where 
undetected lesions may advance to more aggressive forms, 
reducing the likelihood of successful treatment. While the 
RAG model showed high specificity (91%), its sensitivity 
was insufficient to be considered a reliable diagnostic aid in 
a clinical or community screening context. A diagnostic 
model that fails to detect nearly half of actual disease cases 
presents a significant clinical risk, especially in 
environments with limited access to expert assessment [16]. 
In contrast, the RAG + COT model, despite a moderate 
specificity of 64%, provides a clinically acceptable balance 
by substantially reducing false negatives, thereby 
prioritizing early detection with an acceptable increase in 
false positives. Follow-up confirmatory evaluations may 
mitigate such overdiagnosis, but underdiagnosis in screening 
scenarios carries a far greater clinical risk. 

The improved accuracy (82%) and F1 score (0.86) 
observed in the RAG + COT model further support its 
superior diagnostic balance. The incorporation of COT 
reasoning has improved the model’s capacity, aligning with 
growing evidence that structured logical reasoning prompts 
enhance the decision-making performance of Large 
Language Models, especially in complex classification 
scenarios [17]. However, this research is subject to certain 
limitations. The improved performance of RAG+COT may 
not be solely due to chain-of-thought reasoning; dataset 
characteristics, retrieval quality, and bias toward lesion 
features could also contribute. Dataset imbalance (more 
normal than lesion images) may have affected performance; 
oversampling or augmentation could address this in future 
work. As this is a pilot study data augmentation was not 
carried out. Future enhancements should focus on 
optimizing classification thresholds and incorporating 
multimodal inputs such as habit history and demographic 
data to improve specificity while preserving sensitivity, 
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thereby enhancing clinical applicability. Moreover, while 
the dataset utilized in this study was representative, its 
limited size poses constraints on the model’s broader 
applicability. Expanding the sample and incorporating a 
wider variety of intraoral image types would significantly 
enhance the model's generalizability. The study also 
indicates that although the standard RAG model adopts a 
conservative approach by reducing false positives, it is 
unsuitable as a standalone screening tool, despite its high 
specificity. The RAG + COT model, by contrast, offers a 
more clinically valuable performance profile, substantially 
improving sensitivity while maintaining high accuracy. Its 
ability to detect most true positive cases, even at the cost of 
increased false positives, makes it better suited for use as a 
frontline screening tool in tele-dentistry or community health 
settings. The integration of logical reasoning through Chain-
of-Thought prompts enhances its interpretative capacity, 
reinforcing its potential role in AI-assisted oral health 
diagnostics. Incorporating annotated images from multiple 
clinical centres can further enhance data variability and 
minimize inherent biases, thereby strengthening the model's 
reliability and applicability in diverse patient populations. 
 
CONCLUSIONS 
In this preliminary evaluation, large language models 
demonstrated the potential to identify buccal mucosal lesions 
from smartphone-based images with varying accuracy, 
sensitivity, and specificity across prompting approaches. 
While the RAG + COT method achieved the highest 
sensitivity, the Few-Shot approach demonstrated perfect 
specificity in a limited sample. These findings suggest that 
LLMs could complement clinical decision-making in 
resource-constrained settings; however, the results should be 
interpreted cautiously given the relatively small and 
imbalanced test sets, potential sampling bias, and absence of 
external validation. Future research should involve larger, 
more diverse datasets, real-world clinical testing, and 
exploration of integration strategies with clinician 
workflows to assess the practical utility and safety of such 
systems. 
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